
Towards Completeness: Security Coverage Metrics for System Level
Information Flow *

Ece Nur Demirhan Coşkuna, Sallar Ahmadi-Pourb, Muhammad Hassana,b, and Rolf Drechslera,b

aCyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
bInstitute of Computer Science, University of Bremen, 28359 Bremen, German

Abstract

The increasing use of complex, feature-rich systems necessitates robust security measures. A single vulnerability can
trigger far-reaching and disastrous outcomes, such as rendering various Intellectual Properties (IPs) unavailable and
causing system malfunction. It is crucial to integrate security policies early in the design phase and to define specific
Security Properties (SPs) regarding threat models. To tackle various threat models and pinpoint potential violations, we
assess the SPs using Security Coverage Metrics (SCMs). This paper provides an overview of SCMs targeting availability
threats and related weaknesses for system level information flow. To implement the SCMs, we show SiMiT; a tool
that leverages Virtual Prototypes (VP) and uses Static and Dynamic Information Flow Tracking (IFT) techniques. We
demonstrate the applicability of the SCMs on an open-source RISC-V VP to show how these metrics advance the concept
of security-aware Completeness Driven Development (CDD) and secure System-on-Chip (SOC) designs. Finally, we
discuss the future direction of SCMs.

1 Introduction
Hardware designs with real-time requirements are increas-
ingly vulnerable to security threats, such as Denial of Ser-
vice (DoS) attacks [1]. These attacks pose a significant risk
as they can render the Intellectual Properties (IPs) inopera-
tive when they are most needed. This could potentially lead
to the IPs failing to function properly, or even cause the en-
tire system to malfunction [1]. Such vulnerabilities high-
light the importance of secure design in modern System-
on-Chip (SOC) architectures.
Information Flow Tracking (IFT) is an effective security
validation technique, particularly for addressing vulnera-
bilities which violate information flow policies. These
policies are fundamental for maintaining important aspects
like confidentiality, integrity, and availability [2]. The ef-
fectiveness of IFT hinges on the precise definition of Se-
curity Properties (SPs). These definitions aim to identify
vulnerabilities that align with the specific threat model be-
ing targeted. Therefore, it is vital to conduct both quali-
tative and quantitative analyses of these SPs. These anal-
yses should include the use of Security Coverage Metrics
(SCMs) as part of the security validation process [3]. These
metrics are vital for verification engineers to identify cov-
erage gaps, enabling them to effectively evaluate system
weaknesses, pinpoint vulnerabilities, and understand their
impacts. Such understanding is important for strengthen-
ing the security framework of SOC designs.
These security measures should be integrated from the be-

*This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project ECXL under con-
tract no. 01IW22002, the project PaSVer under contract no. 16ME0855,
the project SASPIT under contract no. 16KIS1852K, and the project
Scale4Edge under contract no. 16ME0127.

ginning of the SOC design process, due to strict Time-
to-Market (TTM) constraints [2]. This necessity has led
to a growing preference for Virtual Prototypes (VPs) in
the semiconductor industry [2, 3]. VPs are sophisticated
software models of hardware, often developed using Sys-
temC and its Transaction Level Modeling (TLM) formal-
ism [4]. They serve as critical reference points for early
stages of software and hardware development. VPs are
utilized at the Electronic System Level (ESL) as the initial
step for early design and verification within the concept of
Completeness-Driven Development (CDD) [5]. The high
level idea of CDD is to verify every aspect of the design
at each abstraction level (e.g., System/RTL/Gate/Layout),
and to ensure that each stage of development is completely
checked in a measurable manner before proceeding to the
next.
The existing CDD concept primarily emphasizes func-
tional correctness, but does not consider security. Devel-
oping a security-aware CDD concept is key to identifying
the security weaknesses. This involves the use of SCMs to
analyze SPs and reduce possible risks. While various SPs
for IFT have been established to assess VP-based models
against security threats [2], there are still shortcomings in
SCMs for evaluating these SPs at the system level.
In this paper, we provide an overview of SCMs as a cru-
cial part of the security validation technique of VP-based
systems within the context of CDD. Therefore, we focus
on assessing various SPs by measuring them qualitatively
and quantitatively. Then, we show SiMiT, a Static and Dy-
namic IFT tool, designed to implement these SCMs at the
system level. By evaluating these SPs, we can ensure that
IFT techniques satisfy the necessary criteria for achieving
the desired security sign-off, an essential milestone in the
verification process. Our experimental results on an open-



source RISC-V VP case study show the applicability of the
SCMs effectively.

2 Preliminary
This section explains the targeted threat model, availability,
and gives a motivating example to guide the explanation of
the SCMs.

2.1 Threat Model
In this paper, the threat model is based on the principles of
Confidentiality, Integrity, Availability, and Authentication
(CIAA), with a specific focus on availability. Availability
problems arise when an IP overuses shared resources, mak-
ing them inaccessible to other IPs [2]. In essence, availabil-
ity refers to the timely access of these IPs.
2.2 Motivating Example
This section describes a simplified SystemC model of Key-
less Entry System (KES) to illustrate the usage of the
SCMs. It consists of Near Field Communication (NFC)
and Bluetooth (BT) modules to enable smart lock/unlock
function through an authentication process. The model
shown in Figure 1 includes a Bus which connects an NFC
module, a BT module, a Central Processing Unit (CPU),
and a Memory unit. The NFC supports short-range wire-
less communication for authentication to give access to the
authorized entities between the KES and NFC-compatible
smartphones. Similarly, the BT is utilized to authenticate
and grant access to authorized entities. The CPU serves
as the control unit and is responsible for processing data,
managing access control policies, and handling keyless en-
try features as well as coordinating the integration of the
NFC, the BT, and Memory modules. The Memory stores
authorized credentials and vital operational data for the
KES, including configuration settings and access logs re-
lated to communication and authentication.
In a scenario involving an improperly configured access
control system within the Bus IP, shown in Figure 1; the
BT is erroneously prioritized over the NFC for memory
access. Here, the BT authentication takes priority (Line 4),
while the NFC access is deprioritized to a secondary status
(Line 8). This arrangement leads to the BT requests initi-
ating data transfer to memory, whereas the NFC requests
are only allowed access afterward. Misconfigured priori-
ties can allow attackers to disrupt the NFC, missing critical

CPU

Memory

Bus

Figure 1 The SystemC model of a simplified KES

requests. These modules need equal memory access, but
detecting such relation is challenging without automated
IFT tools as well as effective SCMs.

3 Security Coverage Metrics
This section presents a novel set of SCMs for system level
information flow. These metrics assess a range of SPs and
specifically target the availability threat model.
The following subsections will delve into how each metric
offers specific insights and detailed information.

Direct Signal Connectivity The Direct Signal Connec-
tivity (DSC) metric determines direct/explicit flow between
two signals. The Explicit Information Flow (EIF) can be
observed when there is a direct communication between
two modules. For instance, if the BT and the NFC from
Figure 1 had a direct connection, the EIF could occur.

Indirect Signal Connectivity The Indirect Signal Con-
nectivity (ISC) metric determines the implicit connection
between two signals. This connection can be detected
through Implicit Information Flow (IIF), which is subtler
than EIF. The IIF can lead to the unavailability of IPs due to
certain behaviors. It commonly occurs between two mod-
ules where one is in a trusted zone and the other is in an un-
trusted zone, sharing a common memory. An example of
IIF is the interaction between the BT in the untrusted zone
and the NFC in the trusted zone, both accessing memory
via the Bus.

Partial Path Activation The concept of information
flow involves more than just connectivity; it necessitates
the actual activation of these connections. The Partial Path
Activation (PPA) metric quantifies the extent to which a
path is activated between two signals during a specified
time interval [t1, t2]. A path is activated when data success-
fully flows from a signal to reach another signal. The PPA
metric is crucial for demonstrating that the presence of a
pathway between these signals does not always guarantee
flow of information.

Full Path Activation The Full Path Activation (FPA)
serves as a quantitative metric that quantifies the com-
plete activation of paths over the entire execution. For in-
stance, if there are five distinct paths from one signal to
another, FPA observes how many of these paths remain ac-
tive throughout the full execution time.

Information Flow Rate The Information Flow Rate
(IFR) metric captures how frequently information flow oc-
curs from one signal to another over a specific time frame.
By calculating the IFR, we can understand the number of
instances in which the signal successfully communicates
with the other signal within this time frame.

4 SiMiT: A static+dynamic IFT tool
This section explains SiMiT, and the implementation of the
SCMs, as shown in Figure 2.

4.1 Methodologies of SiMiT
SiMiT is a tool that leverages both Static and Dynamic IFT
methods. It uses Clang to capture and accurately track in-
formation for expressions, statements, and other constructs
in a program. It starts with the trace generation, saving the



Clang

Binding Info

SystemC
Model

Call-Graph

SPs

DDG

Static Taint
Analysis

Observed
Dependency

List

CFG
DFA

CFGCFL

ODDG

Static analysis Dynamic analysis

t[0,n-1]

use-dep def-use

Security Coverage Metrics Results

Trace
Results

Figure 2 The workflow of SiMiT

information flow of a given SystemC model at a specific
time frame, along with the current file names and their cor-
responding line numbers. Next step is to define availability
SPs, which necessitates that various IPs must be available
in a timely manner [6]. Therefore, we define SPs as fol-
lows:

SP=
{
(SI,SO)|SI∈{in1=HS, ..},SO∈{out1=AA, ..}

}
(1)

Eq. (1) ensures that inputs with the High Security (HS) tag
are handled in a manner that guarantees outputs are Always
Available (AA) when needed.
After that, the Binding Information (BI) is extracted to es-
tablish module connectivity. This information is crucial for
comprehending how data flows through the system and for
constructing Call-Graphs (CG). The CG is utilized to coor-
dinate the analysis, ensuring that information is accurately
propagated to the respective function within the VP. Next,
Control Flow Graph (CFG) is extracted by adding tra-
versed nodes from the CFG to a Control Flow List (CFL),
starting from the CFG’s root node. The traversal process
moves to the single child of a node when present. In
cases where the current node is conditional and has mul-
tiple children, the traversal proceeds to the child node that
was executed. To determine which child node was exe-
cuted, we maintain a log file during the trace generation.
This log records the visited nodes, including file names and
line numbers. SiMiT then uses this log to navigate to the
executed child node by matching the file names and line
numbers of the child nodes with those in the log. Then,
Data Flow Analysis (DFA) is used to construct definition-
use (def-use) and use-to-dependence (use-dep) pairs for a
given VP through intra-function analysis. Next, the Data
Dependency Graph (DDG) is used to map the relation-
ships among variables in a design, including signals, ports,
and both global and local variables across modules [2]. It
is generated using the CFG, def-use pairs, use-dep pairs,
function calls, and BI. In contrast, the Observed Data De-
pendency Graph (ODDG) for each time step is formed
using the relevant CFLs for those time steps, rather than
the CFG. Then, Static Taint Analysis (STA) is conducted
to generate the Observed Dependency List (ODL). This
process begins with a tainted source and incrementally in-

cludes variables by executing a Depth First Search (DFS)
that utilizes dependence data from each ODDG.

4.2 Implementation of SCMs in SiMiT
DSC: To evaluate the DSC metric for a transition from an
HS-tag signal to an AA-tag signal (see Eq.(1)), we identify
EIFs. To determine if a variable is influenced by Secure
Inputs (SIs), we employ the DDG that uses forward tracing
from the corresponding SI node to a Secure Output (SO)
node. Nodes in this trace related to the SI are assigned
the HS-tag and added to the Sensitive List of Secure In-
puts (SLSI). Additionally, since output variables may de-
rive their values from intermediate variables, we conduct
backward tracing on the DDG to extract assignment state-
ments explicitly linked to outputs with the AA-tag. These
nodes are added to the Sensitive List of Secure Outputs
(SLSO). Then, the CFG of VP is analyzed to identify all
sensitive control signals influencing updates on variables
with AA-tags. Each control flow node type (e.g., if-else,
switch-case, while) is visited, and their control variables
are retrieved. If the intersection of the condition node’s
extracted control variables and SLSI is not empty, an addi-
tional analysis is performed on the condition node’s child
nodes, excluding conditional node types. This analysis
identifies assignment statements with left-hand side vari-
ables in the SO list in the case of EIFs. From the motivating
example, one of the SP is defined as follows:

SP = ({bt_enable_in= HS},{grant_nfc= AA}) (2)

In Eq. (2), the SP ensures that the signal grant_nfc sent
by the NFC module to the Bus module must not be depen-
dent on bt_enable_in of the BT module seen in Figure 1.
According to the assessment no direct flow is found in be-
tween, and DSC = FALSE.
ISC: This metric distinguishes itself from the DSC in
terms of handling paths that connect an HS-tag signal to
an AA-tag signal through conditional edges. In such cases,
an additional step, beyond what DSC provides, involves
examining the SLSO to determine the IIFs. According to
the assessment with same SP in Eq. (2), there exist indi-
rect flow via controlling variable (in Figure 1) bt_request
(n11), and ISC = T RUE.
PPA: The implementation of PPA begins by identifying
the number of paths, denoted as nP, within the DDG where
information originating from a HS-tag signal eventually
reaches AA-tag signal. In the subsequent step, for each
time step in the trace results, we utilize the ODDGs to de-
termine the count of partially activated paths, represented
as nPPA, where information from HS-tag signal success-
fully propagates to AA-tag signal.

PPA(HS,AA, t1, t2) =
nPPA(HS,AA, t1, t2)

nP(HS,AA)
(3)

To illustrate, from bt_enable_in to grant_nfc, we
found nP = 1, nPPA = 1, and PPA = 1, using Eq. (3) for
the first 10 ms.
FPA: The implementation of the FPA metric sets it apart
from the PPA metric by measuring the overall path acti-
vation throughout the entire execution. FPA is defined as:

FPA(HS,AA) =
nFPA(HS,AA)
nP(HS,AA)

(4)



Table 1 Security Coverage Metrics Results

No. AA-tagged SOs DSC ISC PPA FPA IFR (%)
SP1 interrupt_can FALSE TRUE 1 1 3·10−4

SP2 hart_config FALSE TRUE 1 1 7.79·10−3

SP3 target_harts FALSE TRUE 1 1 7.79·10−3

For the KES example, from bt_enable_in to grant_nfc
in Eq. (4), we found nP = 1, nFPA = 1, and FPA = 1.
IFR: To calculate the IFR metric, SiMiT starts by attach-
ing the tainted source information, denoted by the HS-tag.
Next, it performs STA for each tainted source, resulting in
the creation of the ODL. The ODL is then carefully exam-
ined to determine the percentage of IFR, using the follow-
ing formula,

IFR(HS,AA,s1,s2) =
NF(HS,AA,s1,s2)

1+ s2 − s1
·100 (5)

computed over a specified time interval, ranging from sam-
ple index s1 to s2. The addition of ’1’ is necessary since
both s1 and s2 are inclusive in this context. In this calcu-
lation, NF represents the number of flows from the HS-tag
signal to the AA-tag signal. At the motivating example,
bt_enable_in reaches grant_nfc at 2 ms. We found
that it occurs 2 times in 10 ms, for s1 = 1, s2 = 100, and
results in IFR = 2%.

5 Experimental Results
We applied the SCMs to a RISC-V VP [7] based on Sys-
temC with TLM 2.0 modeling. The case study is an
Electronic Control Unit (ECU) for a car engine immo-
bilizer, which includes a SOC based on a RISC-V Cen-
tral Processing Unit (CPU), a Universal Asynchronous
Receiver/Transmitter (UART), a Controller Area Network
(CAN) controller, a Platform Level Interrupt Controller
(PLIC), and memory centered around a Bus. While the
CAN manages low-level communication between the ve-
hicle’s internal systems, the UART enables debugging ca-
pabilities, but poses a potential attack surface that attackers
could exploit to interact with the system. Both modules in-
teract with the CPU trough the PLIC processing incoming
packets, which are received, buffered, and trigger config-
ured interrupts upon reaching a specified buffer limit.
Misprioritizing the UART over the CAN can lead to CPU
delays, hindering communication with peripherals using
critical tasks. The software on the processor sets up de-
vice interrupts and registers handler callbacks for CAN (id
= 2) and UART (id = 8). A flaw prioritizes UART over
CAN, which usually does not impact normal use due to
limited access to the ECU’s debug interface. However,
CAN interrupt handling must be distinct from UART tasks
to avoid signal interference. We identified multiple SPs
influenced by UART signals, highlighting a potential im-
pact on CAN message availability. Our analysis over a 15
ms trace observed 196,313 samples to assess this effect.
For example, from Table 1, in static analysis, SP1 failed
due to interrupt_can, which was implicitly dependent
on plic_uart through six identified paths, influenced by
the controlling variables plic and min_id.

6 Conclusion and Future Direction
We have discussed a set of SCMs for system level informa-
tion flow, and presented SiMiT, a tool that leverages scal-
able Static and Dynamic IFT techniques to implement the
SCMs on SystemC VP models. We showed the demonstra-
tion of the SCMs on an open-source RISC-V VP [7].
One potential research direction involves investigating the
transferability of SPs across different abstraction levels
(e.g., System/RTL/Gate/Layout). This requires appropriate
completeness measures to ensure the overall behavior of
the design is accurately assessed. In this regard, our study
initially focuses on the system level. However, even if the
security metrics of the design are satisfied at one abstrac-
tion level, transitioning to a lower-level abstraction may in-
troduce new vulnerabilities. These are the "transformation-
induced" changes, which can expose it to additional vul-
nerabilities. Consequently, SPs should be adapted for each
subsequent abstraction level. This emergence necessitates
defining additional properties to maintain the security goal,
ensuring consistency with the overall objective. By follow-
ing the CDD concept with a focus on security in the early
design phase, future research can offer a more holistic and
comprehensive view.

7 Literature

[1] F. Sakiz and S. Sen, “A survey of attacks and detec-
tion mechanisms on intelligent transportation systems:
VANETs and IoV,” Ad Hoc Networks, vol. 61, pp. 33–
50, Jun. 2017.

[2] E. N. Demirhan Coşkun, M. Hassan, M. Goli, and
R. Drechsler, “VAST: Validation of VP-based Hetero-
geneous Systems against Availability Security Proper-
ties using Static Information Flow Tracking,” in 2023
24th International Symposium on Quality Electronic
Design (ISQED), Apr. 2023, pp. 1–8.

[3] E. N. Demirhan Coşkun, S. Ahmadi-Pour, M. Hassan,
and R. Drechsler, “Security Coverage Metrics for In-
formation Flow at the System Level,” in 29th Asia and
South Pacific Design Automation Conference (ASP-
DAC’24) (Accepted).

[4] F. Ghenassia, Ed., Transaction Level Modeling with
SystemC: TLM Concepts and Applications for Embed-
ded Systems. Boston, MA: Springer US, 2005.

[5] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne,
H. M. Le, J. Seiter, M. Soeken, and R. Wille,
“Completeness-Driven Development,” in Graph
Transformations, ser. Lecture Notes in Computer
Science, H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, Eds. Berlin, Heidelberg: Springer,
2012, pp. 38–50.

[6] E. Jonsson, “Towards an integrated conceptual model
of security and dependability,” in First International
Conference on Availability, Reliability and Security
(ARES’06), Apr. 2006, pp. 646–653.

[7] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Ex-
tensible and Configurable RISC-V Based Virtual Pro-
totype,” in 2018 Forum on Specification & Design Lan-
guages (FDL), Sep. 2018, pp. 5–16.


