
ParSyC: An Efficient SystemC Parser∗

Görschwin Fey Daniel Große Tim Cassens Christian Genz Tim Warode Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany

{fey,drechsle}@informatik.uni-bremen.de

Abstract— Due to the ever increasing complexity of circuits and
systems new methodologies for system design are mandatory. Lan-
guages that enable modeling at higher levels of abstraction but also
allow for a concise hardware description offer a promising way into
this direction. One such language is SystemC.

In this paper we propose the SystemC parser ParSyC, that allows

to convert given SystemC source code into an internal intermediate

representation. By this a formal model is retrieved from a SystemC

description. ParSyC can serve as a generic front end for different

purposes as e.g. verification or visualization. To demonstrate the

efficiency ParSyC is applied to synthesis of Register Transfer Level

(RTL) descriptions of different sizes and different types of designs.

I. INTRODUCTION

New design methodologies and design flows are needed to
cope with the increasing complexity of today’s circuits and sys-
tems. This applies to all stages of circuit design from system
level modeling and verification down to layout.

One focus of research in this area is the use of new hardware
description languages. Traditionally the system level descrip-
tion is done in a programming language like C or C++, while
dedicated hardware description languages like VHDL and Ver-
ilog are used on the RTL. This leads to a decoupling of the be-
havioral description and the synthesizable description. Recently
developed languages allow for higher degrees of abstraction, but
additionally the refinement for synthesis is possible within the
language. One of these new languages is SystemC [8, 6]. Basis
of SystemC is C++. Therefore all features of C++ are available.
The additional SystemC library provides all concepts that are
needed to model hardware, as e.g. timing or concurrency. By
this, hardware modeling with SystemC can be easily done.

Research on the conceptual side and on algorithms for Sys-
temC is more difficult. For areas like high-level synthesis, veri-
fication or power-estimation a formal understanding of the given
design is necessary before any subsequent processing can be car-
ried out. Most recent publications either focused on special fea-
tures of SystemC or C/C++, like synthesis of fixed point numeric
operations [2], polymorphism [14] or pointers [7], or considered

∗This work was supported in part by DFG grant DR 287/8-1.

the design methodology [10]. Few works (e.g. [11]) have been
published that rely on the formal model of an arbitrary SystemC
design. One reason for this is the high effort to syntactically
and semantically understand the SystemC description. For this
purpose SystemC has to be parsed.

In this paper a Parser for SystemC implemented as the tool
ParSyC is presented. The parser covers SystemC and to a cer-
tain extent C++. The Purdue Compiler Construction Tool Set

(PCCTS) [12] was used to build ParSyC. This parser produces
an easy-to-process representation of a SystemC design in form
of an intermediate representation. The description is generic,
i.e. any further processing can start from this representation, re-
gardless of the application to visualization [5], formal verifica-
tion [4] or other purposes. As an example the application to
synthesis of RTL descriptions is explained and the efficiency is
underlined by experiments. Some of the advantages yielded by
this approach are easy extendability, adaptivity and efficiency of
the SystemC front-end.

The paper is structured as follows: The basic concepts of Sys-
temC are discussed in the following section. The methodology to
create ParSyC and the exemplary application to synthesis are ex-
plained in Section III. Advantages of the approach are discussed
in Section IV. The experimental results are given in Section V.
Conclusions are presented in Section VI.

II. SYSTEMC

The main concepts of SystemC are briefly reviewed in the fol-
lowing to make the paper self-contained. SystemC is a system
description language that enables modeling at different levels
of abstraction. Constructs known from traditional hardware de-
scription languages are also provided. By this, any task between
design exploration at the high-level and synthesis at the low-
level can be carried out within the same environment. Features
to aid modeling at different levels of abstraction are included
in SystemC. For example the concept of channels allows to ab-
stract from details of communication between modules. There-
fore modeling at the transactional level can be done. This in
turn enables fast design space exploration and partitioning of the
design before working on the details of protocols or modules.

In practice SystemC comes as a library that provides classes
to model hardware in C++. For example a module in hardware
is modeled using the class sc_module provided by SystemC.
All features of C++ are also available in SystemC. This includes
dynamic memory allocation, multiple inheritance as well as any
type of complex operations on data of an arbitrary type. Any
SystemC-design can be simulated by compiling it with an ordi-
nary C++-compiler into an executable specification. But to focus
on other aspects of circuit design a formal model of the design is
needed.

Deriving a formal model from a SystemC description is hard:
A parser that handles SystemC – and for this C++ – is necessary.
But developing a parser for a complex language comes at a high
effort. Moreover the parser should be generic in order to aid not
only a single purpose but to be applicable for different areas as
well, e.g. synthesis, formal verification and visualization.

A. Synthesis

In order to allow for concise modeling of hardware several
constructs are excluded from the synthesizable subset of Sys-
temC [16]. For example SystemC provides classes to easily
model buffers for arbitrary data using the class sc_fifo. An
instance of type sc_fifo can have an arbitrary size and can
work without explicit timing. Therefore there is no general way
for synthesis. In principle this could be solved by providing a
standard realization of the class. But in order to retrieve a good -
e.g. small and/or fast - solution after synthesis, several decisions
are necessary. Therefore it is left to the hardware designer to re-
place this class by a synthesizable description. Also the concept
of dynamic memory allocation is hardly synthesizable in an effi-
cient way and therefore excluded from the synthesizable subset.

For a better understanding synthesis of RTL descriptions is
used to demonstrate the features of ParSyC. Due to this applica-
tion the SystemC input is restricted, but as a generic front-end
ParSyC can handle other types of SystemC descriptions as well.

III. SYSTEMC PARSER

In this section the methodology to build a parser and the spe-
cial features used for parsing SystemC are explained. The syn-
thesis of RTL descriptions is carried out using ParSyC as a front-
end.

The methodology for parsing and compiling has been studied
intensively (see e.g. [1]). Often the Unix-tools lex and yacc are
used to create parsers. But more recent tools provide easier and
more powerful interfaces for this purpose. Therefore the tool
PCCTS was used to create ParSyC. For details on the advantages
of PCCTS see [13, 12]. Specialized for SystemC the parser was
built as follows:

sc_in<sc_bv<8> > uSEQ_BUS;

sc_out<bool> LSB_CNTR;

sc_uint<8> counter;

sc_signal<bool> DONE, LDDIST, COUNT;

(a) Datatypes

(0) void robot_controller::counter_proc()

(1) {

(2) if (LDDIST.read()) {

(3) counter = uSEQ_BUS.read();

(4) } else if (COUNT.read()) {

(5) counter = counter - 1;

(6) }

(7) DONE.write(counter == 0);

(8) LSB_CNTR.write(counter[0]);

(9) }

(b) Process

Fig. 1. The process counter_proc of the robot controller from [6]

• A preprocessor is used to account for directives and to filter
out header-files that are not part of the design, like system-
header-files.

• A lexical analyzer splits the input into a sequence of to-

kens. These are given as regular expressions that define
keywords, identifiers etc. of SystemC descriptions. Be-
sides C++ keywords also essential keywords of SystemC
are added, e.g. SC_MODULE or sc_int.

• A syntactitcal analyzer checks if the sequence of tokens
conforms to the grammar that describes the syntax of Sys-
temC. Terminals in this grammar are the tokens.

PCCTS creates the lexical and syntactical analyzer from tokens
and grammar, respectively. Together they are referred to as the
parser. The result of parsing a SystemC description is an Ab-

stract Syntax Tree (AST). At this stage no semantic checks have
been performed as e.g. for type conflicts. The AST is constructed
using a single node type, that can have a pointer to the list of chil-
dren and a pointer to one sibling. Additional tags at each node
are used to store the type of a statement, the string for an identi-
fier and other necessary information. This structure is explained
by the following example.

Example 1 Consider the code fragment in Figure 1. This is one
process of the robot controller introduced in [6]. Figure 2 shows

a part of the AST for this process. Missing parts of the AST

are indicated by triangles. In the AST produced by PCCTS each
node points to the next sibling and to the list of children. The

node in the upper left represents the if-statement from line (2)
of the code. The condition is stored as a child of this node. The

then-part and the else-part of the statement are siblings of
the child.

statement
if

expression
LDDIST

block
{

expression
=

ID
counter

ID
uSEQ_BUS

statement
if

statement
write

statement
write

Fig. 2. AST for Example 1

SystemC description

Preprocessor

preprocessed
SystemC description

Parser

Abstract Syntax Tree

Analyzer

Synthesizer

Netlist

Intermediate
Representation

Fig. 3. The overall synthesis procedure

The overall procedure when applying the parser for synthesis
is shown in Figure 3. The dashed box indicates steps that are
application independent, i.e. the corresponding tasks have to be
executed for other applications as visualization or formal veri-
fication as well. The whole process can be divided in several
steps.

• After preprocessing the parser is used to build the AST from
the SystemC description of a design.

• The AST is traversed to build an intermediate representa-
tion of the design. All nodes in an AST have the same type,
any additional information is contained in tags attached to
theses nodes. Therefore different cases have to be handled
at each node while traversing the AST. By transforming the
AST into the intermediate representation the information is

made explicit in the new representation for further process-
ing. The intermediate representation is built using classes to
represent building blocks of the design, like e.g. modules,
statements or blocks of statements. During this traversal
semantic consistency checks are carried out. This includes
checking for correct typing of operands, consistency of dec-
larations and definitions, etc. (Up to this stage the parser is
not restricted to synthesis and all processing is application-
independent.)

• The intermediate representation serves as the starting point
for the originally intended application. At this point han-
dling the design is much easier, because it is represented as
a formal model within the class structure of the intermediate
representation. The classes used to assemble the intermedi-
ate representation correspond to constructs in the SystemC-
code. Each component is “self-aware”, i.e. it knows about
its own semantic in the original description. Further pro-
cessing of the design is done by adding application-specific
features to the classes used for storing the intermediate rep-
resentation. In case of synthesis a recursive traversal is nec-
essary. Each class is extended by functions for the synthesis
of substructures to generate a gate-level description of the
design.

Example 2 Again consider the AST shown in Figure 2. This is

transformed into the intermediate representation shown in Fig-

ure 4. The structure looks similar to that of the AST, but in the
AST only one type of node was used. Now dedicated classes

hold different types of constructs. The differentiation of these
classes relies on inheritance in C++. Therefore synthesis can

recursively descend through the intermediate representation.

As usual in synthesis, RTL descriptions in SystemC are re-
stricted to a subset of possible C++ and SystemC constructs
[16]. C++ features like dynamic memory allocation, pointers,
recursions or loops with variable bounds are not allowed to pre-
vent difficulties already known from high-level-synthesis. In the

CIfStatement

condition

then

else

CBlock

statements

CLiteralExp.

LDDIST

CIfStatement

condition

then

else

CVariableExp.

counter

CVariableExp.

USEQ_BUS

CAssignStat.

destination

source

CAssignStat.

destination

source

CAssignStat.

destination

source

Fig. 4. Intermediate representation

same way some SystemC constructs are excluded from systhe-
sis as they have no direct correspondence on the RTL, e.g. as
shown for sc_fifo in Section II.A. Thus, for simplicity Sys-
temC channels were excluded from synthesis. For channels that
obey certain restrictions synthesis can be extended by providing
a library of RTL realizations.

Supported are all other constructs that are known from tradi-
tional hardware description languages. This comprises different
operators for SystemC-datatypes, hierarchical modeling or con-
current processes in a module. Additionally, the new-operator
is allowed for instatiation of submodules to allow for a compact
description of scalable designs.

Outcome of the synthesis process is a gate-level description in
BLIF-format as used by SIS [15]. Switching the output format
to VHDL or Verilog on the RTL is easily possible. Focus of this
work is the parsing of SystemC and retrieving a formal model
from the description, therefore no optimizations are applied dur-
ing synthesis.

IV. DISCUSSION

The presented approach to create a formal model from a Sys-
temC description has several advantages:

• Extendability. SystemC is still evolving. The parser can
easily be extended to cope with future developments by
changing the underlying grammar and extending the classes
for the intermediate representation. The necessary changes
are straightforward in most cases.

• Adaptivity. Here, ParSyC is only exemplary applied to syn-
thesis, but several other applications are also of interest.
When starting with a new application that should work on

SystemC-designs the intermediate representation directly
serves as a first model of the design. Only application spe-
cific extensions are necessary to allow for further process-
ing.

• Decoupling. The complex process of parsing should be hid-
den from the application. The use of ParSyC as the front-
end to “understand” a given SystemC description allows the
intended application to concentrate on algorithms and effi-
ciency for the intended purpose.

• Efficiency. A fast front-end is necessary to cope with large
designs. The efficiency of the front-end is guaranteed by
the compiler-generator PCCTS. The subsequent application
can directly start processing the intermediate representa-
tion that is given as a C++-class structure. Experiments are
presented in the next section to underline the efficiency of
ParSyC.

• Compactness. The parser should be compact to allow for
an easy understanding during later use and extension. The
parser itself has only ≈1000 lines of code (loc) which in-
cludes the grammar and necessary modifications beyond
PCCTS to create the AST. The code for analyzing and
the classes for the intermediate representation consists of
≈4000 loc. For synthesis ≈2500 loc are needed. The com-
plete tool for synthesis including error handling, messaging
etc. has ≈9000 loc. Comments and blank lines in the source
are not included in these numbers.

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

0

Cell 0

Cell n−1

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_outCell 1

Fig. 5. Arbiter: Block-level diagram

V. EXPERIMENTS

All experiments have been carried out on a Pentium IV with
Hyperthreading at 3GHz and 1GB RAM running Linux. ParSyC

has been implemented using C++.

A control dominated design and a data dominated design are
considered in the first two experiments, respectively. Large
SystemC-descriptions are created from ISCAS89-circuits to
demonstrate the efficiency of ParSyC in the third experiment.

A. Control Dominated Design

The scalable arbiter introduced in [9] has been frequently used
in works related to property checking. Therefore a SystemC-
description on the RTL was created and synthesized. The top
level view of the arbiter is shown in Figure 5. This design han-
dles the access of NUMC devices to a shared resource. Device
i can signal a request on line req_in[i] and may access the
resource, if the arbiter sets ack_out[i]. The arbiter uses pri-
ority scheduling, but also guarantees that no device waits for-
ever (for details we refer to [9]). Figure 6 shows the SystemC-
description of the top-level module scalable. For each of
the n devices a corresponding arbiter cell is instantiated and the
cells are interconnected using a for-loop. Results for the syn-
thesis with different numbers of arbiter cells are shown in Table
I. Given are the size of the netlist output and the CPU times
needed. The netlist is built from 2-input gates. The number of
gates that is contained in the flattened netlist, while the hierarchi-
cal description generated by the synthesis tool always contains
190 gates: 188 gates per arbiter cell plus one additional buffer
and one inverter. The same holds for the number of latches. The
flattened netlist contains two latches per arbiter cell while the hi-
erarchical netlist only contains two latches in total. Note, that
the arbiter cells are described at RTL and synthesis is carried out

1 # i n c l u d e " RTLCell . h "

2 # i n c l u d e " I n v e r t e r . cc "

3 # d e f i n e NUMC 2

4

5 SC_MODULE(s c a l a b l e) {

6 / / D e c l a r a t i o n o f i n p u t s , o u t p u t s

7 / / and i n t e r n a l s i g n a l s i s o m i t t e d

8 / / due t o l a c k o f space

9

10 I n v e r t e r ∗ i n v ;

11 RTLCell ∗ c e l l s [NUMC] ;

12 SC_CTOR(s c a l a b l e) {

13 f o r (i n t i = 0 ; i < NUMC; + + i) {

14 / / Crea te c e l l i

15 c e l l s [i] = new RTLCell (" c e l l s ") ;

16 i f (i ==0) {

17 / / Connect c e l l 0

18 c e l l s [i]−>TICK (c l k) ;

19 . . .

20 c e l l s [i]−> ove_ou t (o v e r r i d e _ o u t) ;

21 } e l s e {

22 i f (i ==(NUMC−1)) {

23 / / Connect c e l l NUMC−1

24 . . .

25 } e l s e {

26 / / Connect c e l l i

27 . . .

28 }

29 }

30 }

31 i n v = new I n v e r t e r (" I n v e r t e r ") ;

32 inv−>i n (o v e r r i d e _ o u t) ;

33 inv−>o u t (g r a n t _ i n) ;

34 }

35 } ;

Fig. 6. Arbiter: Top-level module scalable

without applying optimizations. Therefore the gate level repre-
sentation of the cells can not be optimal.

The times needed for parsing tp, analyzing ta, synthesis ts and
the total time tt are shown in the respective columns. As can be
seen scaling the arbiter does not influence the time for parsing
because only the constant NUMC in the source code is changed.
The time for analyzing increases moderately since type checks
for the different cells have to be carried out. During synthesis the
for-loop has to be unrolled and therefore scaling influences the
synthesis time. The total time is dominated by the time needed
for synthesis and includes overhead like reading the template for
the output format, parsing the command line etc.

Even synthesizing a design that corresponds to a flattend
netlist with 200k gates takes less than one CPU second.

TABLE I
ARBITER: SYNTHESIS RESULTS

NUMC in out latches gates tp ta ts tt

5 6 5 10 942 0.01 <0.01 0.01 0.04
10 11 10 20 1882 <0.01 0.01 <0.01 0.01

50 51 50 100 9402 <0.01 <0.01 0.02 0.04
100 101 100 200 18802 <0.01 0.01 0.02 0.04

500 501 500 1000 94002 <0.01 0.03 0.08 0.11
1000 1001 1000 2000 188002 <0.01 0.06 0.16 0.24

B. Data Dominated Design

The second design is a FIR-filter of scalable width. Scalable
are the number of coefficients and the bit-width of data. A block-
level diagram of the FIR-filter is shown in Figure 7. Incoming
data is stored in a shift register (d[0],...,d[n-1]), coeffi-
cients (c[0],...,c[n-1]) are stored in a register array. The
result is provided at the output dout. The SystemC descrip-
tion contains one process to create the shift-register and another
process that carries out the calculations. The coefficients are
provided by an array of constants. Synthesis results for different
bit-widths and numbers of coefficients are given in Table II. In
case of the arbiter additional checks for submodules were nec-
essary during analysis of the for-loop. This is not the case for
the FIR-filter, where no submodules are created, therefore scal-
ing does not influence the time needed for analysis. But for the
FIR-filter the time for synthesis increases faster compared to the
arbiter when the design is expanded. This is due to the descrip-
tion of the multiplication as a simple equation in SystemC:

1 f o r (i n t i = 0 ; i < n ; i ++) {

2 tmp = c [i] ∗ d [i] . r e a d () ;

3 o u t = o u t +tmp ;

4 }

Instead of instantiating modules, the operations are directly gen-
erated into the netlist. Therefore bit-width and number of coef-
ficients have a direct influence on the synthesis time and the size
of the output.

Again a large design of 500k gates has been parsed and ana-
lyzed very fast. The synthesis, which inlcudes writing the output
to the hard disk, only took about 5 seconds.

C. Large SystemC Descriptions

The first two experiments showed the influence of scaling dif-
ferent types of designs. In the following the influence of a large
SystemC description is investigated. Circuits from the ISCAS89
benchmark set are considered. Starting from the netlist Binary
Decision Diagrams (BDD) [3] were built for each circuit. While
building the BDD no reordering techniques were applied for size
reductions. For each output and next state the BDD was dumped

+

d[1] d[2] d[n]

c[1] c[2] c[n]

x x x

+

din

dout

reset

Fig. 7. FIR-filter: Block-level diagram

TABLE II
FIR-FILTER: SYNTHESIS RESULTS

width coeff in out latches gates tp ta ts tt

2 2 3 4 8 159 <0.01 <0.01 <0.01 <0.01
2 4 3 4 12 301 <0.01 <0.01 <0.01 <0.01
2 8 3 4 20 585 <0.01 <0.01 0.02 0.03

4 2 5 8 16 611 <0.01 <0.01 0.01 0.01
4 4 5 8 24 1189 <0.01 <0.01 0.02 0.04
4 8 5 8 40 2345 <0.01 <0.01 0.03 0.03

8 2 9 16 32 2283 <0.01 <0.01 0.03 0.04
8 4 9 16 48 4501 <0.01 <0.01 0.05 0.05
8 8 9 16 80 8937 <0.01 <0.01 0.10 0.12

16 2 17 32 64 8699 0.01 <0.01 0.07 0.08
16 4 17 32 96 17269 <0.01 <0.01 0.14 0.15
16 8 17 32 160 34409 <0.01 <0.01 0.30 0.31

32 2 33 64 128 33819 <0.01 <0.01 0.29 0.29
32 4 33 64 192 67381 <0.01 <0.01 0.63 0.64
32 8 33 64 320 134505 <0.01 0.01 1.22 1.23

64 2 65 128 256 133211 <0.01 <0.01 1.23 1.23
64 4 65 128 384 265909 <0.01 <0.01 2.34 2.35
64 8 65 128 640 531305 <0.01 <0.01 5.34 5.34

into an if-then-else-structure, which was embedded in a
SystemC-module. This module was synthesized. The results are
shown in Table III. Given are the name of the circuit, the lines
of code #loc and the number of characters #char in the SystemC
code. The circuits are ordered by increasing #loc. As can be seen
the time for parsing increases with the size of the source code,
but is small even for large designs of several 100000 #loc. The
time needed for analysis increases faster due to the semantical
checks and the translation into the intermediate representation
that are carried out at this stage. The largest amount of time is
due to synthesis were the intermediate structure is traversed and
the netlist is written.

As a reference the time needed to compile the SystemC code
using g++ (version 3.3.2, optimizations turned off, no linking is
done) is given in column tg++. Compiling the SystemC descip-
tion using g++ means to create an executable description of the
design for simulation. Therefore this is comparable to synthesis
which creates the hardware description of the design. The total

TABLE III
ISCAS 89: SYNTHESIS RESULTS

circuit #loc #char tp ta ts tt tg++

s27 184 3129 <0.01 <0.01 0.01 0.02 2.26
s298 1269 20798 0.01 0.02 0.07 0.12 2.26
s382 2704 47343 0.02 0.05 0.16 0.26 2.44
s400 2704 47343 0.03 0.04 0.16 0.26 2.41
s386 4260 69331 0.04 0.07 0.24 0.39 2.57
s526 3332 52999 0.03 0.05 0.19 0.31 2.56
s344 5103 86055 0.04 0.06 0.29 0.45 2.70
s349 5103 86055 0.05 0.09 0.29 0.49 2.73
s444 6264 97100 0.06 0.11 0.39 0.63 2.78
s641 54849 847546 0.48 1.27 4.16 6.47 8.27
s713 54849 847546 0.50 1.29 4.24 6.58 8.52
s1488 60605 981692 0.57 1.15 3.61 5.95 8.81
s1494 60605 981692 0.55 1.17 3.61 5.96 8.84
s1196 247884 3817191 2.27 5.57 16.53 26.82 30.88
s1238 247884 3817191 2.33 5.62 16.58 27.01 31.28
s820 402546 6130213 3.80 10.53 25.36 43.77 42.68
s832 402546 6130213 3.75 10.57 25.69 43.99 43.12

runtime needed for synthesis is comparable to the time needed
by g++, even for the largest files.

The experiments have shown, that ParSyC is an efficient front-
end for SystemC. For this purpose designs have been considered
that are large in terms of the number of gates and in terms of the
size of the SystemC-description. The performance of ParSyC is
comparable to an efficient and widely used compiler as g++.

VI. CONCLUSIONS

ParSyC has been introduced as a front-end to construct a for-
mal model from a SystemC description. The formal model is
given by an intermediate representation that can serve as a start-
ing point for different applications in the design flow, like veri-
fication, visualization and others. This allows to hide the com-
plexity of parsing a SystemC description from the intended ap-
plication. As an example the synthesis of RTL descriptions has
been shown. Several experiments underline the efficiency of the
tool.

ACKNOWLEDGMENT

We would like to thank FunTaskIC, a project run by students
of the University of Bremen. FunTaskIC was where the main
implementation work has been done and where a lot of important
discussions took place.

We would also like to thank Terrence J. Parr and the PCCTS
development team for providing the Purdue Compiler Construc-
tion Tool Set as public domain software.

REFERENCES

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers - Principles,

Techniques and Tools. Pearson Higher Education, 1985.

[2] A.G. Braun, J.B. Freuer, J. Gerlach, and W. Rosenstiel. Auto-

mated conversion of SystemC fixed-point data types for hardware

synthesis. In VLSI of System-on-Chip, pages 55–60, 2003.

[3] R.E. Bryant. Graph-based algorithms for Boolean function ma-

nipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[4] D. Große and R. Drechsler. Formal verification of LTL formu-

las for SystemC designs. In IEEE International Symposium on

Circuits and Systems, pages V:245–V:248, 2003.

[5] D. Große, R. Drechsler, L. Linhard, and G. Angst. Efficient auto-

matic visualization of SystemC designs. In Forum on Specification

and Design Languages, pages 646–657, 2003.

[6] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with

SystemC. Kluwer Academic Publishers, 2002.

[7] D. Kroening, E. Clarke, and K. Yorav. Behavioral consistency

of C and Verilog programs using bounded model checking. In

Design Automation Conf., pages 368–371, 2003.

[8] S. Liao, S. Tjiang, and R. Gupta. An efficient implementation

of reactivity for modeling hardware in the scenic design environ-

ment. In Design Automation Conf., pages 70–75, 1997.

[9] K.L. McMillan. Symbolic Model Checking. Kluwer Academic

Publisher, 1993.

[10] W. Müller, W. Rosenstiel, and J. Ruf, editors. SystemC Method-

ologies and Applications. Kluwer Academic Publishers, 2003.

[11] W. Müller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and

W. Rosenstiehl. The simulation semantics of SystemC. In De-

sign, Automation and Test in Europe, pages 64–70, 2001.

[12] T. Parr. Language Translation using PCCTS and C++: A Refer-

ence Guide. Automata Publishing Co., 1997.

[13] T.J. Parr and R.W. Quong. ANTLR: A predicated-LL(k) parser

generator. Software – Practice and Experience, 25(7):789–810,

1995.

[14] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn, and

W. Rosenstiel. Object-oriented modeling and synthesis of Sys-

temC specifications. In ASP Design Automation Conf., pages 238–

243, 2004.

[15] E. Sentovich, K. Singh, L. Lavagno, Ch. Moon, R. Murgai, A. Sal-

danha, H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-

Vincentelli. SIS: A system for sequential circuit synthesis. Tech-

nical report, University of Berkeley, 1992.

[16] Synopsys. Describing Synthesizable RTL in SystemCTM , Vers.

1.1. Synopsys Inc., 2002. Available at http://www.synopsys.com.

