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Abstract—Ensuring the correctness of circuits and systems by
test and verification is one of the central tasks in modern design
flows. But most of the core algorithms have large run times,
since the underlying problems can be proven to be NP- or co-
NP-complete. Thus, there is little hope to find efficient algorithms
that can solve all instances in polynomial time and space. But
recently it has been shown in the context of Polynomial Formal
Verification (PFV) that for a large class of practical relevant
functions fast exact algorithms can be provided.

In this talk recent developments in the field of PFV are shown
and directions for future work are outlined. The similarities in
this domain between test and verification problems are discussed.
Experimental studies show that very large designs can be handled
in PFV, while fast run time can be ensured.

Index Terms—circuit design, correctness, verification, test,
formal methods, BDD

I. INTRODUCTION

According to Moore’s Law the complexity of modern de-
signs steadily increases resulting in devices that consist of
more than 20 billion transistors, and the next generation will
contain up to a trillion1. It can be observed that the increase
per year is slowing down (see Figure 1 following [1]), but in
modern design flows the tools have to cope with huge instances
and the underlying data structures are of utmost importance.

Along the design flow several computational hard problems
have to be solved. For most of them it can be shown that they
are NP- or co-NP-complete. While for logic synthesis, place
and route often heuristic solutions are sufficient, in the area
of test and verification exact algorithms that allow to traverse
the complete search space are required.

Due to the complexity of the underlying problems exact re-
sults by algoithms with polynomial worst-case bounds cannot
be expected in general. But recently the concept of Polynomial
Formal Verification (PFV) has been introduced in [2]. Here,
the core idea is to prove for a specific class of functions -
adders in this case - that the complete verification process can
be carried out in polynomial time and space.
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Fig. 1: Moore’s law

In this paper, the concept of PFV is reviewed. It is shown
that for classes of functions, if an adequate implementation
is chosen, algorithms with polynomial worst-case behavior
can be designed. Next, also algorithms in the context of
hard testing problems, like Automatic Test Pattern Generation
(ATPG), are considered and similarities between test and
verification are identified. Finally, directions for future work
are outlined.

II. POLYNOMIAL FORMAL VERIFICATION

Polynomial upper and exponential lower bounds on various
types of graph-based function representations are known for
long (see e.g. [3]). But in this context only the representation
size of the final function, e.g. for adders and multipliers, was
considered. While for PFV the complete construction process
has to be taken into account. It has to be ensured that the whole
verification task (that might consist of symbolic simulation or
backward substitution) can be carried out in polynomial time
and space. It is important to notice that the efficient result not
only depends on the function under consideration, but also
the used architecture has a siginificant effect. For an overview
on PFV and on recent results for bit- and word-level in this
context see [4].

III. POLYNOMIAL ALGORITHMS IN TEST

Also in the context of testing circuits, it is known for long
that some of the hard problems, like ATPG, become easy,
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Fig. 2: BDD and resulting circuit

e.g. [5], [6]). Here, similarities between PFV and testing can
be identified. For tree-like circuits and also circuits derived
from a mapping of BDDs it has been proven in [7] that PFV
applies. The example from this paper shows that a BDD-circuit
results from a BDD by substituting each internal node by a
multiplexer.

Example III.1. For the OR-function fOR = x1+x2 the BDD
is shown on the left hand side of Figure 2. The resulting circuit
is shown on the right hand side, where each internal node is
substituted by a multiplexer cell.

For this type of BDD-circuits also ATPG can be done
efficiently for various fault models (including the stuck-at and
the path-delay fault model) [8]. A simple hardware extenstion
presented as a Design-for-Testability (DFT) approach in [9]
shows that 100% testability can be achieved. In both fields,
i.e. test and verification, the problem can be simplified, if the
number of reconvergent paths is limited or if the reconvegen-
cies can be controlled, e.g. by multiplexer structures.

IV. CONCLUSION AND FUTURE DIRECTIONS

Test and verification are central tasks in today’s design
flows. Since the underlying problems have high computational
cost in the worst case, in general performance predictions
cannot be expected. But for restricted classed of functions
in combination with fitting proof engines and architecture
realizations, polynomial algorithms can be designed.

While first steps in this direction are very promising, there
are several directions for future work:

• There is a good understanding of BDDs (and bit-level
decision diagrams in general) in the meantime. For other
formal proof techniques, like SAT- and SMT-solvers, PFV

is still in an early stage. This also applies to Word-Level
Decision Diagrams (WLDDs), like BMDs or K*BMDs.

• The relation between test and verification scenarios needs
a deeper understanding. Findings from one domain can
then be transferred and vice versa.

• Similar to DFT also approaches for Design for Verifia-
bility (DFV) would be desirable. In this context it would
be good to precisely suggest architectures that the formal
tools can finally handle efficiently.

Only based on a rigorous analysis of the complexity of the
algorithms, next generation tools can ensure efficient run times
and scalability.
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