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Abstract—The increasing urge to bypass the issue of the
memory bottleneck in the current computer architectures has
attracted high attention to in-memory computing enabled by
emerging memory technologies such as Resistive Random Access
Memory (RRAM). This paper studies in-memory computing
from two perspectives, i.e. customized and instruction-based. The
customized approach exploits logic representations to synthe-
size for in-memory computing. The approach proposes design
methodologies and optimization algorithms for each representa-
tion with respect to area and latency upon the realizations of their
logic primitives. The instruction-based approach proposes an
automatic compiler to execute instructions on a logic-in-memory
computer architecture and optimizes the programs. Experimental
results for both approaches reveal considerable improvements
compared to the state-of-the-art.
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I. INTRODUCTION

The advancements in the processors of modern computers
have far exceeded that of memory. The considerably higher
latency of memory compared to processor on one hand, and
the requirement of communication between these two in the
von Neumann architecture on the other hand, has limited the
overall performance of current computing systems which is
known as memory wall. The growing need to deal with higher
amount of data demanded by emerging applications such as
internet of things (IoT) and big data has prompted much
research to alleviate this problem [1]. Among these solutions,
in-memory computing sounds to be very promising as it allows
to go beyond the memory wall by integrating the storage and
computing paradigms. This provides speedups of several orders
of magnitude.

One of the core technologies enabling in-memory comput-
ing is Resistive Random Access Memory (RRAM). RRAM is a
promising non-volatile memory technology with high scalabil-
ity and zero standby leakage energy which internal resistance
can be switched between two states, i.e. low and high. So
far, several approaches have been proposed which exploit this
resistive switching property to execute logic functions within
RRAM devices exploiting. Material Implication (IMP) has
been widely used for logic-in-memory computing [2]. A logic
family called MAGIC was also proposed in [3] which allows to
realize Boolean functions using NOR and NOT operations. In
[4], it was shown that RRAM natively implements a majority
oriented operation (MAJ) which allows to utilize majority
logic for in-memory computing.

In this paper, we explore synthesis for in-memory com-
puting from two different perspectives, i.e. (i) based on a
customized approach at gate level which employs logic rep-
resentations, and (ii) an instruction oriented approach for
efficient manipulation, compilation, and execution of programs
on a logic-in-memory architecture. The presented customized
synthesis approach uses IMP and MAJ as basic operations

on RRAM array which can be alternatively according to the
design preferences, while the instruction based approach uses
MA.J only for executing programs.

The customized synthesis approach starts with finding
efficient realizations for the logic primitives of the employed
representations, i.e. Binary Decision Diagram (BDD), And-
Inverter Graph (AIG), and Majority-Inverter Graph (MIG).
The approach presents optimization algorithms and a com-
prehensive design methodology to map each representation
into equivalent netlists of operations and RRAM devices to
be performed on a resistive memory array. The results of the
presented customized approach reveal significant improvement
compared to the state-of-the-art using the same logic represen-
tations.

By means of the instruction-based approach, we fully au-
tomatize and optimize an existing logic-in-memory computing
architecture. Furthermore, we address the issue of lower write
endurance of RRAM devices and propose wear-leveling tech-
niques to increase the lifetime of the aforementioned architec-
tures. Experiments performed on large arithmetic and control
functions show considerable improvement in the distribution
of writes all over the memory array as well as the number of
cycles and RRAM devices representing the latency and area
of the resulting implementations.

The remaining of this paper is structured as the following.
To keep the paper self-contained, required preliminaries are
explained in Section II in adition to a brief review of the state-
of-the-art. Section III and Section IV present the customized
and instruction-based synthesis approaches, respectively. Sec-
tion V concludes the paper.

II. BACKGROUND
A. Logic Representations

1) Binary Decision Diagrams (BDDs): Binary Decision
Diagram (BDD, [5]) is a graph based data structure which
allows to represent Boolean functions efficiently. A BDD is
obtained from recursively applying Shannon decomposition
f = xifs, ® Zifz, such that each node represents a sub-
function. Using complemented edges in the graph, also allows
to represent a sub-function and its complement by the same
node. The decomposition is performed according to a certain
variable ordering which results in a canonical BDD. For
example, the ordering of the BDD shown in Fig. 1(a) is in order
r1 < T9 < 3, where the complemented edges are denoted by
dots on the successors.

In circuit realization, each BDD node is mapped to a multi-
plexer which makes the number of nodes a determining factor
in the costs of the resulting implementations. Therefore, BDD
optimization, i.e. finding a variable ordering which results
in a smaller BDD has been of high interest for applications
utilizing BDDs. In this paper, we assume that the variable
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Fig. 1. Logic representations for an example function with three input
variables.

ordering of an initial BDD before optimization is ascending
x1 < x3 < -+ < Ty, where n is the number of input variables.

2) Homogeneous Logic Representations for Circuits:
And-Inverter Graph (AlG, [6]) and Majority-Inverter Graph
(MIG, [7]) are homogeneous logic representation which are
used in this work. An AIG node designates logical conjunction
x -y, which is majority of three M (z,y,2) = z-y+x-2+y-2
in case of MIGs. The graphs also include inverters which are
in terms of complemented edges. Both representations allow
to efficiently represent Boolean functions and are utilized by
state-of-the-art synthesis tools.

An AIG can easily be transformed into an MIG by adding
a third zero input x - y = M (z,y,0). Fig. 1(b) and (c) show
both AIG and MIG representation for a three input function.
As the figure shows, the number of nodes for both graphs is
equal to three. However, MIGs can allow even more compact
representations compared to AIGs [8].

B. Logic Operations enabled within RRAM

1) Material Implication (IMP): In [2], it was shown that
material implication (IMP), i.e. ¢’ <+ pIMP ¢ = p+ ¢, can be
executed from the interaction of two resistive switches under
certain voltage levels shown by Vggr and Voonp in Fig. 2(a).
The logical states of the resistive devices can also be simply
switched between logic 1 or 0, i.e. FALSE operation, when
applied to appropriate voltage pulses to set or clear the devices.
IMP and FALSE together make a universal set of logic
operations sufficient to execute arbitrary Boolean functions on
resistive arrays.

2) Resistive Majority Operation (MAJ): In [4], an intrinsic
majority operation enabled by RRAM devices was introduced
which suffices to compute any Boolean function. Let us denote
the top and bottom electrodes of an RRAM device with P and
Q@ (see Fig. 2(b)). Assuming that the current resistive state
of the device (R) can be switched to 1 and O by applying a
positive or negative voltage level Vpq, respectively, the next
state of the device (R’) changes based on the truth tables shown
in Fig. 2(b). By expanding the Boolean relation in the tables, it
can simply be shown that the next resistance state of the device
isequalto R = M(P,Q,R)=P-Q+P-R+Q-R,ie. the
result of three-input majority function when the logical state
of the bottom electrode is inverted. This operation is referred
to three-input resistive majority operation which is denoted by
MAJ in this paper.

C. Related Work
The majority of related work for logic-in-memory synthesis
using resistive devices exploit IMP as the basic operation. In
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Fig. 2. The Boolean operations executable within RRAM used at this work.
(a) Implementation of IMP and its truth table [2]. (b) The intrinsic majority
operation within an RRAM device [4].

[9], an approach was presented to map BDDs into networks
of resistive devices. The work follows two main objectives
in the presented mapping methodologies, one with respect to
the area, i.e. serial computation, and the other with respect to
the latency, i.e. parallel computation. In [10], a BDD-approach
for logic-in-memory synthesis was proposed which improves
the parallel methodology in [9]. [10] exploits a multi-objective
BDD optimization algorithm which results in significantly
improved results in terms of area and latency compared to [9].
AIG [11] and OIG [12], i.e. Or-Inverter Graphs have been
also utilized for synthesis with RRAM devices using IMP
operation.

Other basic operations enabled by RRAM devices have
been also exploited in the state-of-the-art. MAGIC, i.e.
Memristor-Aided loGIC, [3] is one of this approaches which
allows to implement logic functions as a network of NOR
gates on RRAM array. In [4], MAJ was used as the only form
of logic operation performed in the Programmable Logic-in-
Memory (PLiM) architecture. The architecture was simply de-
signed to control a single MAJ instruction during each cycle.
The number of executable MAJ-based instructions per cycle
was increased to two in [13] enabled by heuristic palatalization
algorithms. Technology mapping for the architecture proposed
in [13] was further improved in terms of crossbar area [14] as
well as delay [15] by applying optimization techniques during
technology mapping.

III. CUSTOMIZED SYNTHESIS

The customized synthesis approach includes three stages,
(1) finding efficient realizations with RRAM devices for logic
primitive of each representation, (ii) then, defining the design
methodology to map the representations into RRAM array, (iii)
and finally optimizing the representations with respect to the
number of RRAM devices and operations determined by the
design methodology. In the following, we explain the proposed
customized approach for logic representations BDD and AIG
briefly and provide an implementation example in the case
of MIG. Due to the lack of space, we refer the reader to
[16] for the details of the optimization algorithms for each
representation.

An IMP-based realization for a 2-to-1 multiplexer (MUX)
has been proposed in [9] which requires six operations and five
RRAM devices. Using MAJ, the realization [16] requires six
devices and executes the MUX function within five operations.
This trade-off between the required number of RRAM devices



TABLE 1. THE COST METRICS OF LOGIC REPRESENTATIONS FOR

RRAM-BASED IN-MEMORY COMPUTING

Metric Definition\ Value

N; No. of nodes in the i*" level

CE; No. of ingoing complemented edges in the it Jevel

RE; No. of ingoing regular edges in the " Jevel

FO Maximum no. of nonconsecutive fanouts in any BDD level
D The depth of the graph

Lcre  No. of levels with ingoing complemented edges
Lrr No. of levels with ingoing regular edges

R No. of RRAM devics

opP No. of operations

BDD:
max (K- N, + CE;)+ FO IMP: K =5 MAJ: K =6
0<i<D

AlG:
#R  IMP: max (3-N;+ RE;) MAJ: max (3-N; +CE;)
0<i<D 0<i<D

MIG:

max (K - N; + CE;) IMP: K =6, MAJ: K =4
0<i<D

BDD:

K- -D+ Leg IMP: K =6, MAJ: K =5

AIG:
IMP:3-D+ Lrg

MIG:
K- -D+ Lcg

#OP MAJ:3-D + Log

IMP: K =10, MAJ : K =3

and operations allows to choose between the realizations
according to the design preferences when either latency or
area is of higher importance.

Table I shows the cost metrics of the BDD-based synthesis
approach for both IMP and MAJ-based realizations. The
BDD is first optimized with respect to these cost metrics,
see optimization algorithms in [10], [16], and can then be
implemented on an RRAM array according to a level-by-level
design methodology. This means that starting from the bottom
of the graph all of the nodes in each BDD level are computed
simultaneously. After computation of each level, the RRAM
devices are released and can be used as input devices for
computation of the next level. This procedure continues until
the root function is computed.

For computing each level, the number of required RRAM
devices includes five or six times the number of nodes in
the level, one extra RRAM device for each complemented
edge, and one extra device for preserving the value of each
nonconsecutive fanout, i.e. a fanout targeting a level else than
the next successive one. Since the RRAM devices are reused,
the number of devices required to compute a BDD is equal to
the maximum number of required devices over all of the levels.
The number of operations to compute a BDD is at least six
or five rimes the number of BDD levels, for IMP or MAJ-
based representations, respectively. However, this value must
be added to the number of levels which possess complemented
edges as their negation needs extra operations. It should be
noted that copying the values of the nonconsecutive fanouts
can be performed at the same time step of loading the inputs
of the level, and therefore is not counted in the number of
operations [16].

Table I also shows the cost metrics for AIG-based synthe-
sis obtained by the same level-by-level design methodology
explained above. The values are shown for the imp-based
realization of NAND gate [11] and the M A J-based realization
of AND gate [16] as logic primitives of AIG. Both realizations
need three RRAM devices and three operations. The IMP-
based realization also includes an inverter, which can be
directly used for the complemented edges but needs inversion
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Fig. 3. (a) MIG representing a three bit XOR gate, and upper-bound crossbar
for implementing it using (b) IMP-based and (c) MAJ-based realizations.

for the regular edges. As a result, the levels possessing regular
edges need additional operations.

The IMP-based realization [17], [16] for the majority gate
is shown in the following. The realization needs six RRAM
devices, input devices X, Y, and Z and extra devices A, B,
and C' required for negating or storing the operations’ outputs.
The majority function is executed after ten operations. The first
operation loads the required devices with the input variables
and zero, and the rest of the steps include IMP and FALSE
operations.

0: X =2,Y =y, Z=206:c+—yIMPc=a+y
A=0,B=0,C=0
02: a + z IMP a 07:c+zIMPc=z-2z+4+y-z2

03: b+ y IMP b ; 08:a =0

04:y+— alMPy=a2+y|09:a+ bIMPa=x-y

05: b 2IMPb=2+3 |[10:a <+ cIMPa=2-y4+y-z+x- 2

It is obvious that the M A J-based realization for MIG-based
synthesis can be realized more efficiently due to exploiting the
natively implemented majority function in RRAM devices. As
shown in the following, the realization of majority gate in this
case needs a maximum of four devices and three steps.

I: X=2,Y=y,Z=2,A=0
2:PAr=1,Qa=y,RaA=0=R), =7
3: Pz =2,Qz =y,Rz =z = R'Z = M(z,y, z).

Fig. 3(a) shows an MIG representing a three-input XOR
gate. Here, we show how this MIG can be implemented on
an RRAM array with devices shown by R;;, where i and j
denote the indices of the row and column, respectively.

The presented design methodology computes all nodes in
a level simultaneously and for this purpose it allocates a row
to each node. This means a single operation per cycle is
performed at each row. As the example MIG has a maximum
level size of two, the required crossbar needs at least two
rows with at least six devices (see Fig. 3(b)). Also, one
extra device at the end of each row is considered to be used
for complemented edges. As Table I predicts the number
of required steps is 22, i.e. 10 times the depth 2 plus two
additional steps for the complemented edges at both levels.

Initialization R;; = 0;

1: Loading for level 1 Ri1 =z,R12 =y, Ri13 = 2;

Ro1 =z, Raa = y, Rag = 2;

Ri7 < zIMP Ryi7 : Ri17 = 7;

3-11: Computing level 1 node 1: R14 = M(Z, vy, 2);

node 2: Ros : M(z,vy, 2);

Ri1 =z, Ri2 = M(z,y,2), Ri3 = M(%,y, 2)
Ris = R15 = Ri6 = R17 = 0;

Ry7 + Ri2 IMP Ry :

Ri7 = Ri2 = M(z,y, 2);

14-22: Computing level 2 Ri4y = M (M (Z, y, 2), z,ﬁ(z, Y, 2));

2: Negation for node 1

12: Loading for level 2

13: Negation for node 3
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Fig. 4. Comparison of synthesis results by logic representations for RRAM-
based in-memory computing, (a) the average number of RRAM devices, (b)
the average number of operations.

The steps for the MAJ-based implementation of the MIG
shown in Fig. 3(a) are shown in the following. As the steps
show, the XOR function is executed using only three devices
and within only four steps despite the upper bound of 8
which is predicted by Table I for an MIG with two levels
possessing complemented edges. Indeed, the complemented
edges at nodes 1 and 3 can be directly used as the second
input of MAJ without being inverted. Furthermore, the RRAM
updated devices can be used as inputs for the next cycle which
means that the loading step is not required. It should be noted
that applying signals to the rows and columns during the
MAJ-based implementation should avoid data distortion by
preserving previously computed results and the simultaneous
operations in other rows [16]. For example, in step 2 the values
of Ri; and Rs; are preserved by equalizing the logical states
of their terminals when performing a MAJ operation within
Ras.

Initialization Rij=0:Qi; =1,P;; =0;
Q1=Q2=0,P =P =z
R11 : RM3(2,0,0) = M(2,1,0) = z;
R21 : RM3(2,0,0) = M(2,1,0) =z
2: Negation fornode 2 Q1 = Q2 =z, Py =z, P> = 1;

Ros : RM3(1,,0) = M(1,%,0) = &;
node I: Py =y,Q1 =z,R11 =2
R11: RM3(y,z,2) = M(y, T, 2);

1: Loading

3: Computing level 1

node 2: Py = y,Q2 = Z (QR35) , R21 = z;

R21 : RM3(y, &, z) = M(y,z, 2);

P, =z,Q1 = QRa1, R11 = M(Z, vy, 2);

Rll H RMg(m,@Rgl,@Rll) = J\/[(I,@RQh@Rll) :
M(M(i,y,z),:c,ﬁ(w,y,z));

4: Computing level 2

Table II shows the results of the proposed approach for
the MIG-based synthesis using both IMP and MAJ and
compares them with the state-of-the-art BDD-based [9] and
AlIG-based approach [11]. According to Table II, the total
number of operations by our proposed MIG-based synthesis
approach using MAJ-based realization is almost one-ninth of
the corresponding value by BDD-based synthesis [9] at a fair
cost of 57.42% increase in the number of RRAM devices. Even
when the IMP-based realization is used our proposed approach
is three times faster that that presented in [9]. Furthermore, in
comparison to [11], the results show speed-ups of 7.1 and 2.57
times using maj and imp for implementation, respectively.

Fig. 4 compares the synthesis results based on the three
representations using both IMP and MAJ for implementation.
As the figure shows, the BDD-based approach needs the
smallest number of devices but leads to high latency. On
the other hand, synthesis methodologies based on AIG and
MIG require more RRAM devices but decrease the length of
operations. In particular, the MIG-based approach using MAJ
results in implementations with the smallest latency.

Before optimization After optimization

1: 0, 1, QR Ri <0 |1: 0,1, @Ry |Ry «+ 0
2: 1, ig, @Rl Rl < {3 2: i3, 0, @Rl Rl < i3
124 4 124, 3: 41,22, QR |Ry < N1 |3t 2,41, QR1|Ry < N1
a1l s 4: 0, 1, QR Ro <+ 0 |4: i4, i2, QR1|R1 + N2
21i223 7’17:21‘3 5: 1, @Rl, @R2 R2 e Nl
6: iz, 14, @Rz R2 < N2
Fig. 5. The effect of MIG optimization on the number of RRAM devices

and instructions.

IV. INSTRUCTION-BASED SYNTHESIS

In [4], a Programmable Logic-in-Memory (PLiM) com-
puter architecture was proposed which allows to perform logic
operations on a regular RRAM array when its controller is
on. The PLiM can also perform as a standard RAM system
in case that the control signal is off. The controller consists
of a simple finite state machine and some work registers to
perform MAJ operations, which we refer to instructions. Only
a single MAJ instruction is allowed per cycle. An arbitrary
instruction has the format M (P, Q), R) with three operands to
be assigned. The first operand P is the signal applied to the
top electrode of the RRAM device, i.e. the row driver, and the
second operand ( is the signal applied to the bottom electrode,
i.e. the column driver. The third operand R is the current state
of the device under computation which updates automatically
when the instruction is executed.

The PLiM computer derives the instruction set for com-
puting an arbitrary Boolean function from its MIG represen-
tation. The characteristics of the MIG, the order of nodes for
computation, and assigning the operands for each instruction
significantly affect the number of required RRAM devices
and instructions which address the area and delay of the
resulting PLiM implementations [1], [18], [19]. In this work,
we propose an automatic compiler which generates PLiM
programs for computing arbitrary functions while addressing
the aforementioned cost metrics.

As the PLiM performs computations fully serially the
number of nodes in the MIG, i.e. the size of the MIG, is
a determining factor in the length of the resulting set of
instructions. Therefore, optimizing the MIG with respect to
the number of nodes can considerably improve the latency
of PLiM implementations. However, the number of nodes is
not the only feature that should be addressed during MIG
optimization. MAJ ideally needs one complemented edge to
compute a node within a single instruction. Otherwise, one
extra device and instruction are required to invert one operand
before computing the node which makes the number and
position of the complemented edges influential. Fig. 5 shows
an example MIG with two nodes before and after optimiza-
tion which has only changed the graph with respect to the
complemented edges. As the figure shows, MIG optimization
reduces both of the number of RRAM devices and instructions
required for implementation. We refer the reader to [18] for
the MIG optimization algorithm for PLiM.

As mentioned before, different orders of nodes for compu-
tation as well as choosing the operands result in different cost
metrics regarding area and latency. Our proposed compiler first
finds an efficient order of candidate nodes for computation, and
then translates the nodes into a MAJ instruction by assigning
the operands with the smallest number of RRAM devices and
instructions.

The candidate selection procedure starts with listing the
nodes which are computable, i.e. their children nodes are al-
ready computed. Then, it ranks the candidate nodes according



TABLE II.

COMPARISON OF RESULTS BY THE PROPOSED CUSTOMIZED APPROACH WITH EXISTING APPROACHES USING BDD [9] AND AIG [11]

Benchmark | PL | BDD [9] ‘ MIG-IMP ‘ MIG-MAJ || Benchmark | Inputs | AIG [11] | MIG-IMP ‘ MIG-MAJ

\ | #R #OP | #R #OP | #R #OP || \ | #OP | #R #OP | #R #OP
5xpl1_90 7 84 73 199 99 149 36 9sym_d 9 1418 923 175 398 60
alu4_98 14 642 334 2160 176 1370 72 conlfl 7 18 70 75 28 26
apex1 45 1626 705 3676 165 2343 56 con2f2 7 19 60 76 24 24
apex2 39 122 237 531 143 358 56 examl_d 3 12 43 44 19 16
apex4 9 2073 447 4728 143 2820 64 exam3_d 4 12 50 55 20 23
apex5 117 806 888 1482 141 1053 47 max46_d 9 427 408 131 193 48
apex6 135 770 1169 1652 121 1018 44 newill_d 8 50 129 109 57 40
apex7 49 290 437 408 132 277 48 newtag_d 8 21 90 96 36 33
b9 41 125 298 252 87 168 32 rd53f1 5 27 60 64 24 25
clip 9 120 89 312 110 217 40 rd53f2 5 57 77 77 35 28
cm150a 21 56 127 147 77 95 32 rd53f3 5 32 86 66 38 24
cml62a 14 46 102 90 86 60 30 rd73f1 7 238 291 121 140 44
cml63a 16 42 116 102 76 68 27 rd73f2 7 46 129 88 57 32
cordic 23 32 149 189 121 134 48 rd73f3 7 104 193 107 84 39
misex| 8 83 69 111 66 76 24 rd84f1 8 351 430 153 187 52
misex3 14 444 185 2207 165 1444 67 rd84f2 8 47 172 88 76 31
parity 16 23 113 216 132 152 53 rd84f3 8 23 90 50 36 15
seq 41 1566 692 3189 153 1970 64 rd84f4 8 345 473 141 214 47
481 16 26 107 148 142 90 52 sa02f1 10 102 110 108 72 35
table5 17 580 168 2630 154 1723 64 sa02f2 10 112 234 119 98 42
too_large 38 282 232 510 164 322 64 sa02f3 10 380 325 143 143 55
x1 51 230 398 569 99 435 36 sa02f4 10 252 326 143 163 59
x2 10 60 80 66 76 46 26 sym10_d 10 1172 1475 187 643 72
x3 135 770 1169 1729 99 1008 44 t481_d 16 1564 1285 187 567 72
x4 94 401 642 599 77 391 28 xor5_d 5 32 86 66 38 24
> ‘ | 11299 9026 | 27902 3004 | 17787 1154 || X ‘ 194 | 6861 | 7615 2669 | 3390 966

to their effects on the number of RRAM devices and the
length of the instructions and finally chooses the best node for
computation. The comparison of the nodes is performed based
on two main principles, (i) increasing the number of devices
which are released after computation of the node, and (ii)
lowering the duration of time that RRAM devices are blocked
and cannot be reused.

Fig. 6(a) shows an MIG with two candidate nodes u and
v. One child node is shared between both of the candidates,
which is also needed as an input of the root node and therefore
the RRAM device keeping its value cannot be released after
computing u and v. Hence, u has two releasing children, while
v has only one. In this case, the compiler selects u to be
computed first.

For the second principle, see Fig. 6(b). The node A is an
input of the root node GG. Thus, the RRAM device storing the
value of A is blocked for long time and cannot be released to
end of the computations. To avoid an increase in the number of
RRAM devices resulted by this, the compiler computes such
nodes with long waiting time as late as possible. This case, also
causes an uneven write traffic which in the long term wears
some devices out much earlier than others. Indeed, postponing
to compute the nodes with long waiting time is a wear leveling
strategy which enhances the lifetime by balancing the writes
all over the memory [20]. This especially matters as RRAM
devices have limited write endurance that should be addressed
in the design process.

Besides the endurance-aware compilation, we also propose
other techniques to uniformly distribute the writes. This in-
cludes endurance-aware MIG optimization to lower the sources
of unbalanced write traffic within an MIG, and direct tech-
niques, i.e. allocating the RRAM device with the minimum
write count when a device is requested, and allocating fresh
RRAM devices when all of previously freed devices have been
already rewritten for more than a certain value [20].

Table III shows the number of required RRAM devices
and instructions of the 1proposed instruction-based approach
on a EPFL benchmarks'. The results are for shown for the

Thttp://1si.epfl.ch/benchmarks
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Fig. 6. (a) Reducing the number of RRAMs by selecting the candidate with
more releasing children. (b) Reducing the number of RRAMs and balancing
the write traffic by selecting the nodes with long storage duration later.

naive PLiM implementations, implementations after only MIG
optimization, and both MIG optimization and compilation. The
results show improvements of 20.09% and 14.83%, respec-
tively in the number of instructions and RRAM devices after
only MIG optimization. As the compilation aims to reduce the
number of the devices, the reduction in the total number of
devices considerably improves to 61.4% after compilation.

The standard deviation of writes over the RRAM devices is
shown in Fig. 7. The results are shown for the combination of
the minimum write strategy, endurance-aware MIG optimiza-
tion, and endurance-aware compilation. The comparison of the
results with the naive implementations shows an improvement
of 72.17% over all of the benchmarks.

V. CONCLUSION

This paper presents a comprehensive customized approach
for synthesis of logic-in-memory circuits using the logical
representations BDD, AIG, and MIG. The presented approach
introduces realization of the logic primitives using two basic
operations enabled by RRAM devices, and provides optimiza-
tion algorithms and design methodologies for crossbar imple-
mentation. The paper also proposes an automatic compiler for
a regular logic-in-memory computer architecture and improves



TABLE IIIL

EXPERIMENTAL EVALUATION OF THE PROPOSED INSTRUCTION-BASED APPROACH

Benchmark |  PI/PO | naive ‘ MIG optimization ‘ MIG optimization and compilation

‘ ‘ #N #1 #R | #N #I  impr.(%) #R  impr(%) | #1 impr. #R  impr.(%)
adder 256/129 1020 2844 512 1020 2037 28.38 386 24.61% 1911 32.81 259 49.41
bar 135/128 3336 8136 523 3240 5895 27.54 371 29.06% 6011 26.12 332 36.52
div 128/128 57247 146617 687 50841 147026 -0.03 771 -12.22% 147608 -0.68 590 14.12
log2 32/32 32060 78885 1597 31419 60402 23.43 1487 6.89% 60184 23.71 1256 21.35
max 512/130 2865 6731 1021 2845 5092 24.35 867 15.08% 4996 25.78 579 43.29
multiplier 128/128 27062 76156 2798 26951 56428 2591 1672 40.24% 56009 26.45 419 85.03
sin 24/25 5416 12479 438 5344 10300 17.09 426 2.73% 10223 18.08 402 8.22
sqrt 128/64 24618 60691 375 22351 47454 21.81 433 -15.46% 49782 17.97 323 13.87
square 64/128 18484 54704 3272 18085 33625 38.53 3247 0.76% 33369 39.00 452 86.19
cavle 10/11 693 1919 262 691 1146 40.28 236 9.92% 1124 4143 102 61.07
ctrl 726 174 499 66 156 258 48.29 55 16.66% 263 47.29 39 40.91
dec 8/256 304 822 257 304 783 4.74 257 0.00% 777 5.47 258 -0.39
i2c 147/142 1342 3314 545 1311 2119 36.05 487 10.64% 2028 38.81 234 57.06
int2float 1177 260 648 99 257 432 33.33 83 16.16% 428 33.95 41 58.59
mem_ctr] 1204/1231 46836 113244 8127 46519 85785 24.25 6708 17.46% 84963 24.97 2223 72.65
priority 128/8 978 2461 315 977 2126 13.61 241 23.49% 2147 12.76 149 52.70
router 60/30 257 503 117 257 407 19.09 112 4.27% 401 20.28 64 45.30
voter 1001/1 13758 38002 1749 12992 25009 34.19 1544 11.72% 24990 34.24 1063 39.22
> ‘ ‘ 236710 608655 22760 ‘ 225560 486324 20.09 19383 14.83 ‘ 487214 19.95 8785 61.40

# N': number of MIG nodes, #1: number of instructions, # R: number of RRAM devices, improvement is calculated compared to naive
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Fig. 7. Standard deviation of writes for the PLiM architecture.

the execution costs considerably with respect to latency, area,
and the write balance.
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