
Smart Homes Programming: Development and
Evaluation of an Educational Programming

Application for Young Learners
Mazyar Seraj1,2 Cornelia S. Große1 Serge Autexier2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{seraj,cornelia.grosse,drechsler}@uni-bremen.de

{mazyar.seraj,serge.autexier,rolf.drechsler}@dfki.de

ABSTRACT
In light of the complexity of introductory programming for
young learners, visual programming has become more and
more popular. In particular, block-based educational pro-
gramming systems have emerged as an area of active re-
search. This paper introduces an educational block-based
programming application, enabling young learners to learn
and make programs in the context of smart homes. In this
application, smart objects have a set of primitive behaviors
which can be integrated in the general features of program-
ming languages like variables, conditionals, loops, and func-
tions. The programming language is shown in a graphical
interface to enable young students to program with the ap-
plication. The development and implementation of this ap-
plication, along with helping features for the students are
described. In a pilot study with 20 7th grade students, the
application’s effectiveness and ease of use are evaluated. The
results show that students can fairly solve programming
problems and make real programs in the context of smart
homes. Feedback of the learners is presented and discussed.

CCS CONCEPTS
•Human-centered computing→Visualization; Interac-
tive systems and tools; • Applied computing → Interactive
learning environments;

KEYWORDS
Educational Block-based Programming; Smart Homes; Young
Learners; Visual Programming; Google Blockly
ACM Reference Format:
Mazyar Seraj1,2 Cornelia S. Große1 Serge Autexier2 Rolf
Drechsler1,2 . 2019. Smart Homes Programming: Development and
Evaluation of an Educational Programming Application for Young

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IDC ’19, June 12–15, 2019, Boise, ID, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6690-8/19/06. . . $15.00
https://doi.org/10.1145/3311927.3323157

Learners. In Interaction Design and Children (IDC ’19), June 12–15,
2019, Boise, ID, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3311927.3323157

1 INTRODUCTION
Young learners often have difficulties with respect to de-
signing, integrating, compiling, executing, and debugging
in introductory programming [11, 24]. These difficulties ex-
perienced by young students are related to (i) students’ syn-
tactical knowledge (e.g., syntax errors), and (ii) students’
conceptual and strategic knowledge (e.g., errors when assem-
bling and manipulating code structure) [24]. Educational pro-
gramming tools generally either support students to achieve
results quickly, or introduce them to real programming de-
velopment environments used by professionals [2]. However,
we face the lack of a settlement between a pure programming
development environment, e.g., Integrated Development En-
vironment (IDE) and a simple interface designed for the stu-
dents, allowing them to learn programming and to achieve
results quickly. In this respect, visual block-based program-
ming is designed to allow the students to learn programming
and overcome the obstacles of syntax and manipulation of
code structure [1, 2, 5]. Furthermore, visual block-based pro-
gramming environments have the advantage to be more
independent of young students’ native language and can
be employed in different languages [10, 31]. Besides these
programming environments, the existence of a motivating
context is necessary. In the present contribution, the context
is a real life-size smart home that reflects the programming
activities of young learners. Smart homes are contexts that
perfectly match the educational programming purpose and
maintain the motivation of the learners as (i) they can easily
see the consequences of their programming activities (e.g.,
as soon as someone enters the bathroom, the lights turn on),
and (ii) they can experience the latest technologies and learn
about the future.
We developed an educational block-based programming

application to program smart homes. This approach enables
young learners to learn and make programs which can be
applied in smart homes. The application provides a graphical
interface (see Fig. 1), and allows the learners to have a short
time span between the development of ideas and the trans-
formation and integration into a smart home. Learners have
access to the standard programming language and can make

https://doi.org/10.1145/3311927.3323157
https://doi.org/10.1145/3311927.3323157
https://doi.org/10.1145/3311927.3323157

IDC ’19, June 12–15, 2019, Boise, ID, USA Mazyar Seraj, Cornelia S. Große, Serge Autexier, Rolf Drechsler

Figure 1: Screenshot of the programming application inter-
face. (a) Blockly UI panel (translated to English); (b) Code
panel; (c) Output panel (translated to English); (d) 2D graph-
ical view of the smart home.

modifications. Furthermore, they are able to control the logic
and flow of their programs. In this respect, the application
provides several opportunities for them: (i) creating, editing
and running programs in a real life-size smart home (and
not just a toy robot or a doll house), and (ii) programming
a real smart home in the German Research Center for Ar-
tificial intelligence (DFKI) that is also used by researchers,
i.e., learners can actively participate and experience latest
research efforts on a smart home and learn about the future.
This paper describes the development and evaluation of

this educational block-based programming application in or-
der to facilitate programming for young learners. Results on
the application’s effectiveness and ease of use are provided
through a pilot study with 20 7th grade German secondary
school students. Furthermore, as introductory programming
is difficult for young students [2, 24], visual block-based
programming environments may still not be fully intuitive
for them. Thus, they need help in order to solve program-
ming problems using these environments. Based on instruc-
tional supports presented in [18, 26, 33], it was addressed
that young learners can be supported by worked examples
and instructional explanations in order to solve program-
ming problems. Therefore, by using these supplementary
documents, we helped our young students to work with the
programming application and solve programming problems.
The main contributions of this paper are as follows:
• Development of an educational block-based program-
ming application in the context of smart homes in
order to support young learners to learn and make
programs as well as learn about the future.
• Evaluation of the application’s ease of use and effec-
tiveness in order to help young learners to solve pro-
gramming problems.

2 BACKGROUND AND RELATEDWORK
In this section, first, approaches using visual programming
in educational tools and environments are introduced. Then,
primitives which are designed and used in order to control
the behavior of smart objects and smart environments are
presented.

Visual Programming
Visual (graphical) programming has been used to make pro-
gramming problems easier to understand and solve. Young
learners can create complex programs with little training in
visual programming environments [21, 22]. Visual program-
ming is used in block-based programming editors such as
Scratch [25], Snap! [12], Alice [6] and mBlock [17]. Scratch
and Alice are generally used to make animations, games and
interactive applications. Snap! is an extended reimplemen-
tation of Scratch, letting students to build their own blocks.
Using mBlock allows young students to program robots and
micro-controllers. Pencil Code is a block-based coding tool
developed based on Droplet [1] to help young students work
with JavaScript, CoffeeScript and HTML [2, 31]. Students are
enabled to toggle between text code and blocks freely. This
approach enhances familiarity with syntax while transfer-
ring from blocks to text code [2, 30, 31]. Visual programming,
in particular Google Blockly, has been used as a client side
of web-based environments in a number of educational and
commercial applications and tools. MIT App Inventor [14],
CodeIt [23], CustomPrograms [13], CoBlox [29], BEESM [28],
and MakeCode [15] take advantage of Google Blockly in or-
der to enable young learners and inexperienced users learn-
ing and making programs.
In contrast to a large part of this previous work, we seek

to explore impacts of visual block-based programming en-
vironments with educational focus on young learners. We
wish to support them in order to learn the general purpose
of programming as well as rapidly prototype and customize
ideas in the context of smart homes. Furthermore, we would
like to introduce learners to new technologies which provide
possibilities to tightly connect computer science to reality.
In other words, we aim to introduce the future to young
learners. In this respect, a visual block-based programming
application is provided which enables learners to learn pro-
gramming and implement their ideas into the development
and control of real smart homes in order to motivate them
to take part in that future.
Primitives and Smart Environments
In previous research, capabilities of smart devices were or-
ganized into Primitives. CustomPrograms [13] and CAR-
MEN [20] use this method to implement robots’ behavior and
capabilities into primitives. Each primitive robot behavior
can be called through a function such as navigating the robot
to a location. These primitives are used in order to design a
visual block-based application which enables students with
disabilities (e.g., deafness, muscular dystrophy, and attention
deficit disorder) to program Clearpath Turtlebot, capable of
delivering items and autonomously navigating its environ-
ment [23]. Furthermore, BlocklyDuino which is used in [16]
takes advantage of this method to enable preschool and ele-
mentary school children to program and control the behavior
of Arduino boards.

Smart Environments are composed of a set of smart and
controllable household appliances. Web socket communi-
cation protocol [9] and Remote Procedure Call (RPC) tech-
nology [3, 8] are fairly used as a Web-based interaction to

Smart Homes Programming IDC ’19, June 12–15, 2019, Boise, ID, USA

control them. In this way, HTTP GET and POST requests that
return JavaScript Object Notation (JSON) [4] responses are
used to communicate between user and Web server. BEESM
takes advantage of using primitives in order to enable inex-
perienced users and novice programmers to program smart
environments as well as mobile robots (e.g., Turtlebot) and
micro-controllers (e.g., Arduino or WeMos boards) one at a
time and in combination with each other [28].

3 OVERVIEW OF THE APPLICATION
The proposed educational block-based programming appli-
cation is based on BEESM, enabling young learners to learn
and make programs in the context of smart homes. Differ-
ent features of Hypertext Preprocessor (PHP) programming
language [27] like variables, data types, conditionals, loops,
predefined functions, and operators are included in the ap-
plication.
In this section, the application and its primitives are pre-

sented. First, the smart home is introduced. Second, the capa-
bilities of smart objects are provided, referred to as primitives.
Third, the method of using visual programming is explained.
Finally, the method of compilation and execution of the code
which is generated by blocks is addressed.
Smart Home
Our smart home which is part of the DFKI is a 60 m2 ambient
assisted living lab including bedroom, living room, kitchen
and bathroom (see Fig. 2). The living lab contains various
actuators (e.g., doors and lights) and sensors (e.g., lighting
and temperature). Furthermore, two RGB lamps are available
with an HTTP interface for color setting. Our application can
be applied to any other smart home using web socket com-
munication protocol and RPC technology to control smart
objects.
The smart living lab’s main educational use here is let-

ting young students program different objects for different
purposes in a real life-size smart environment which is also
used by researchers. Additionally, it provides a unique op-
portunity for them to experience latest innovation and to
learn about the future. In this respect, students are enabled to
program different real objects in the living lab and to observe
reactions of these objects to the program in real-time.

Figure 2: A view of the smart home.

Primitives
Connecting to the server (contains all objects names and
status) and each primitive object’s behavior is wrapped in
a function that can be called by the students. Primitives are
explained in the following.

Objects’ attributes. Three primitives related to server connec-
tion and reading object name and status (objects’ attributes)
were designed. The connect_server primitive enables stu-
dents to connect to the webserver and have names and status
of all real objects in an array. The get_name is a simple block
to return the name of all objects, while using the get_status
block allows students to access the status of each object.
These blocks allow students to search and access the name
and current status of each object.
Changing status. Learners can change the status of each ob-
ject using their names. Primitives were included not only to
change the status of each object which is inserted as an input
by the students, but also to show the name, new status and
real-time changes. The set_status block was included for
changing the status of switchable devices and objects which
have a string or number type of value. The status of all
dimmable devices can be set using the set_status_dimmer
block. The set_statusRGB can be applied for RGB lights.
Application Interface
Weused visual programming, specifically Google Blockly [10]
to facilitate programming. Blockly includes programming
elements such as variables, loops, conditional statements,
logical operators and functions. Each element is represented
as a block shaped that they can be snapped together like
puzzle pieces. Blockly allows custom blocks by defining a
block’s appearance, inputs, outputs, and type of connections.
The code generator for each block which is written by de-
velopers enables Blockly to generate the code syntax of the
programming language of our choice. In our application,
PHP code is generated out of the blocks. PHP programming
language was chosen as it is a powerful server side scripting
language to interact with web servers. Furthermore, PHP is
a widely-used, free and efficient programming language.

A set of custom blocks was defined for all primitives with
inputs, outputs and type of connections. Standard PHP pro-
gramming language elements are also provided. In addition,
some PHP functions were designed such as print_r() to print
an array and sleep() to delay the program execution. These
functions are used in order to providemore options to control
the program flow under a category called Program Control.
With this regard, four panels are designed in the applica-

tion (see Fig. 1) as follows:
(a) Blockly UI includes a workspace and a toolbox con-

taining both predefined and customized blocks, where
learners can find and assemble blocks (see Fig. 1a).

(b) A Code panel demonstrates the generated code and
enables learners to edit the code syntax (see Fig. 1b).

(c) An Output panel shows all return values and errors
for debugging purposes (see Fig. 1c).

(d) A 2D graphical view displays how the status of each
object changes based on the program (see Fig. 1d).

Compilation and Execution
Each block generates PHP code based on their inputs and
outputs. The code syntax is generally created by generating
code for the blocks which are at the top level of the program.

IDC ’19, June 12–15, 2019, Boise, ID, USA Mazyar Seraj, Cornelia S. Große, Serge Autexier, Rolf Drechsler

When the student runs the program, the generated PHP code
is sent to the web-server. The application checks whether
the Code Modifier mode is enabled or whether the code gen-
erated by the blocks should be compiled and executed. In
this application, we offer Boolean success values for error
handling: connect_server, get_name and get_status re-
turn false if the connection is not established; set_status,
set_statusRGB and set_status_dimmer return false if the
status is not changed and/or if the new status is not applied
to the real object.

4 PILOT STUDY
Our application was evaluated in a training session in order
to find out whether it was supportive for young learners
to learn and make programs. Specifically, the effectiveness
and ease of use of the application were assessed, and it was
analyzed whether it was beneficial for the learners in order to
solve programming problems. A pilot study was conducted
with 20 7th grade students of a German secondary school (7
girls, 13 boys, age: M = 13.15, SD = 0.75). The duration of
the training session was 150 minutes.
Design
In this study, in addition to an oral introduction to program-
ming and the programming application, we used supplemen-
tary documents – namely worked examples and instructional
procedures – in order to help our learners working with the
application. As introductory programming is difficult for
young learners [2, 24], and they might not listen carefully
to the oral explanations or might not remain fully concen-
trated, supplementary documents were provided in paper
form. These documents supported the students while solving
the programming tasks with the application. In this respect,
the students were randomly divided into two groups: 10 stu-
dents received worked examples, and the other 10 students
received instructional procedures.

All students were inexperienced. At the beginning of the
training session, they were asked to rate their prior pro-
gramming knowledge on a scale from 1 to 5, with 1 "no
prior knowledge", and 5 "with programming experience". All
students rated their prior programming knowledge 2 or be-
low (M = 1.35, SD = 0.59). Although prior programming
knowledge was rated slightly higher by the students who had
worked examples (M = 1.50, SD = 0.71) compared to those
who had instructional procedures (M = 1.20, SD = 0.42),
no significant difference was observed, F (1, 18) = 1.328,
p = 0.264.
Tasks
In this study, the students worked on two tasks. In the first
task, focusing on learning variables and iterative logics, the
students were asked to fetch and show the name and sta-
tus of each object in the Output panel after connecting to
the server. In this task, differences between variables were
demonstrated, and the students were introduced to use a fore-
ach loop in order to iterate through the list of all objects. In
the second task, differences between operators were demon-
strated, and the students worked with loops and conditional

statements. They were introduced to use for loops as well
as several if statements to change the color of RGB lights
based on random integers for several times.
Procedure
At the beginning of the training session, the students re-
ceived a pre-questionnaire. At the end of the session a post-
questionnaire was given to them in order to assess their
view on ease of programming with the application. The stu-
dents were randomly divided into two groups. While one
group answered the pre-questionnaire, the other group was
introduced to the smart home. Afterwards, the first group
was introduced to the smart home, while the second group
answered the pre-questionnaire. All objects and their func-
tionalities in the smart home were explained for 20 minutes
per group. Then, within each group, pairs of two students
were assigned to one computer. Each computer showed a
real-time full vision of the smart home during the session us-
ing three IP cameras. All students were introduced to general
features of programming and the programming application
for 50 minutes. Variables, data types, conditional statements,
iterative logics, loops, and logical operators, as well as cus-
tomized functions and primitives were explained. Before
starting to work on the programming tasks, the two types
of supplementary documents – namely worked examples
and instructional procedures – were given to the students.
Furthermore, before working on each task, they were pre-
sented a program introducing the corresponding task. The
two programs respectively were (i) demonstrating the names
of all available objects in the smart home, and (ii) changing
the status of a dimmer light for one time. Afterwards, the
students performed and completed the tasks described in
the previous section. Then, they went to the smart home
to see the changes in reality. Finally, they worked on the
post-questionnaire.
Measures
An objective measure of the application’s effectiveness is
the students’ success in performing the tasks. Each task con-
sisted of several steps. Performance was operationalized by
the rate of steps completed without errors. The blocks which
were generated by the students were checked after the ses-
sion. We labeled each block with a value and gave a final
rate to the whole program based on the blocks which were
correctly used and placed. Errors occurred with respect to
the students’ syntactic knowledge [24]; for instance, missing
variable names or typing errors while using blocks. In addi-
tion, errors happened during assembling and manipulating
code structure using blocks; for instance, using an if state-
ment block to check a condition without using a foreach loop
block to get all the objects names; thus, demonstrating flaws
in the students’ conceptual and strategic knowledge [24].
In addition, subjective data was collected in the post-

questionnaire. At the end of the training session, students
were asked to rate the items "is it easy to program with
blocks?" and "do you think that you can easily implement
ideas by programming with blocks?" using a 5 point Lik-
ert scale (with 1 "no", and 5 "yes"), and they were asked

Smart Homes Programming IDC ’19, June 12–15, 2019, Boise, ID, USA

about their preference of programming with blocks or with
code syntax using a 5 point Likert scale (with 1 "definitely
with code", and 5 "definitely with blocks"). Furthermore, the
students were asked "do you think that it is helpful to be
able to see directly in reality whether the program works as
desired?", to be answered on a 5 point Likert scale (with
1 "no", and 5 "yes"). Additionally, at the end of the post-
questionnaire, the students were asked to provide feedback
using two questions, namely "what did you particularly like
about the training session?", and "what did you particularly
dislike about the training session?" in an open-ended format.

5 FINDINGS
The programming application was evaluated with respect
to two aspects; accordingly, in the following, first, results
concerning the ease of use are reported; second, students’
performance is analyzed. Additionally, the students’ feedback
about the training session is presented.
Ease of Use
The results with respect to the ease of use shows that on
average, the students found programming with blocks easy
(M = 4.15, SD = 0.75), and they found it easy to imple-
ment ideas in block-based programming (M = 4.15, SD =
0.81). When asked about their preference of programming
with blocks or with code syntax, the majority of students
had a positive attitude towards programming with blocks,
M = 4.00, SD = 1.21. Furthermore, the students found that
being able to see the impacts of their program in reality is
helpful, M = 4.20, SD = 1.06. Regarding the ease of pro-
gramming with blocks depending on the type of supple-
mentary documents, an ANOVA yielded a significant result,
F (1, 18) = 5.44, p = 0.031, partial η2 = 0.232, indicating that
students who had worked examples (M = 4.50, SD = 0.71)
found programming with blocks significantly easier com-
pared to those who had instructional procedures (M = 3.80,
SD = 0.63) of how to use the programming application.
With respect to the other three items (concerning imple-
menting ideas with blocks, preferring blocks or code syntax,
and seeing impacts of the program in reality), no significant
differences were obtained, all F < 1.
Effectiveness
Overall, the students performed 65% of the first task and
84% of the second task without errors. It means that in av-
erage, 74.5% of both tasks were completed without errors.
Descriptively, in the first task, the students with worked
example performed better compared to the students with
instructional procedure, 77% and 53%, respectively. However,
due to the small sample size (n = 10 dyads) no inferential
statistics can be provided. With respect to the second task,
both groups achieved approximately the same solution rate:
81% for students with worked example, and 87% for students
with instructional procedure. In both tasks, the most com-
mon errors were setting different values to a same variable,
typing errors while defining variables, and using blocks out-
side of loops and conditional statements where they should
be placed within.

Students’ Feedback
We assessed the students’ feedback concerning the training
session using the following open-ended questions: "what
did you particularly like about the training session?", and
"what did you particularly dislike about the training ses-
sion?". These two questions were answered by 15 and 4 stu-
dents, respectively. Table 1 shows what the students liked
and disliked about the training session as well as the number
of students who mentioned these aspects.

Table 1: Students’ Feedback on Training Session
Students’ Feedback Number of Students
+ program by ourselves 3
+ tryout by ourselves 3
+ programming / learning about programming 4
+ liked "everything" in the training session 2
+ blocks / learning how to program with blocks 2
+ programming the smart home was very cool,
smart home was great 1
– explanation at the beginning of the session
was difficult to understand 3
– it was a bit complicated 1

6 DISCUSSION
In this study, the capabilities of a smart home were orga-
nized into primitives. These primitives can be applied to
other smart homes using web socket communication pro-
tocol and RPC technology as a web-based interaction to
control household appliances. Primitives were implemented
in the application to work with all devices such as dimmable
and switchable devices as well as sensors. Inexperienced,
young students worked with the primitives to program and
observe the impacts of their programs on a real life-size
smart home. Furthermore, this application has the advantage
of helping students to learn general features of program-
ming and allowing them to program the DFKI’s smart home
which is also used by researchers. Generally, the students
found block-based programming easy, and largely they pre-
ferred working with blocks compared to programming text
code. This is supporting the results from a prior study that
compared block-based with text-based programming [32].
Furthermore, students thought that they can easily imple-
ment new ideas while using blocks and found it helpful to
observe the impacts of their programs in reality. These data
indicate that the application is useful for young learners
without prior programming knowledge. Using the proposed
application, inexperienced, young students were motivated
to learn and make programs to control different objects in a
real life-size smart home. This is in line with findings from [7]
which showed that by providing opportunities for children
to change and modify the environment, they could gradually
build an understanding and make rapid changes.

Google Blockly offers a framework for developers to make
programming easier for inexperienced users and young learn-
ers. However, keeping in mind that introductory program-
ming is difficult for inexperienced and young students to
solve programming problems [2, 24], the visual block-based
programming application may still not be fully intuitive
for them. In this respect, an oral introduction to general

IDC ’19, June 12–15, 2019, Boise, ID, USA Mazyar Seraj, Cornelia S. Große, Serge Autexier, Rolf Drechsler

features of programming and the programming application
was presented to the students. Furthermore, in the present
work, two supplementary documents were implemented in
order to help the students to work with the application and
solve programming problems, namely worked examples and
instructional procedures. As the students might not listen
carefully to the oral explanation or might not remain fully
concentrated, these documents were given to them in paper
form while using the programming application.

With respect to subjective questionnaire data, the results
showed that the students who had worked examples found
blocks easier to program compared to the students who had
instructional procedures of how to use the programming
application, and the students working with examples also
performed (descriptively) better in the first task compared to
those working with instructional procedures. With respect to
the second task, no large difference between the two groups
was observed. Overall, in both groups, the performance rate
in the second task – which was more complicated than the
first task – was better than the performance rate in the first
task, indicating substantial learning progress. Thus, when
interpreting students’ performance, this indicates a higher
effectiveness of the application when students become more
familiar with it. In line with this interpretation, errors such as
setting different values to a same variable, typing error while
defining variables, and using blocks outside of loops and
conditional statements where they should be placed within
occurred less frequent in the second task compared to the
first task. This result is in line with results from [19] that
young learners are capable of testing and debugging their
programs when they can physically change and modify the
environment.

With respect to the students’ feedback about the training
session, it can be noted that the students liked the training
session because (i) they could program and tryout by them-
selves, and (ii) they learned about programming and how to
program with blocks. However, some of them found it diffi-
cult to understand the information provided at the beginning
of the session, indicating further need to find ways how to
make the very start and the first contact with programming
more accessible for young students.
Implications
Being well aware that many teachers and educators do not
have immediate access to smart environments, we aim to
introduce young learners to an innovative, unique environ-
ment which provides possibilities of how computer science
can be connected to real-world environments. We support
learners and motivate them to learn general purposes of pro-
gramming. To this end, a visual block-based programming
application was developed which enables learners to pro-
gram and see impacts on a real life-size smart home. The
results show that with this application, learners are able
to program successfully by themselves. In this respect, vi-
sual block-based programming environments are suitable to
simplify programming and to remove difficulties, and smart
homes can provide a motivating and fascinating context for
young learners.

We would like to emphasize that in our study, we directly
asked school math teachers to come to the DFKI with their
interested students. In this respect, teachers need to allocate
a time slot in order to come to us with a group of students,
limiting the possible number of students learning with the
application.
Future studies with a larger sample size should focus on

possible influences of young learners’ gender and compe-
tence levels such as prior programming knowledge with
respect to visual block-based programming environments
and real life-size smart homes. In future work, based on the
results obtained in this study, we plan to better adapt our
training session to the students’ needs in order to make it eas-
ier to understand and follow. Furthermore, students should
be enabled to practice self-paced and to perform more cre-
ative tasks following their own ideas in the smart home.
Including self-paced and creative tasks will also help to bet-
ter adapt the training sessions to different levels of students’
prior knowledge, and it becomes easier to capture the inter-
ests of the individual learners. In this respect, for instance,
students shall be allowed to workwithmicro-controllers (e.g.,
Arduino or WeMos boards) and mobile robots (e.g., Turtle-
bot) in combination with smart homes in order to design
and create their own innovative ideas. Thus, they can be sup-
ported in understanding how robots and micro-controllers
can be integrated into smart homes and work with available
objects.

7 CONCLUSION
This paper presents the development and evaluation of an
educational block-based programming application and its
primitives, enabling inexperienced, young students to pro-
gram a real life-size smart home. The results show that stu-
dents can fairly complete programming tasks and make real
programs. Common difficulties are revealed which should be
addressed in future work; mostly occurring due to different
variables as well as sets of blocks which needed to be placed
in loops and conditional statements.
The present study shows that inexperienced, young stu-

dents have a positive attitude toward working with a visual
block-based programming environment and are able to pro-
gram and tryout by themselves. Furthermore, students’ feed-
back shows that having access to a smart home is interesting.
It can help them to see how the environment reacts to their
program when it is following the programming principles
and structures.
Still, it remains an open question whether different com-

petence levels significantly affect the young learners’ atti-
tude towards using a visual block-based programming en-
vironment in the context of smart homes. More detailed
knowledge about learners’ performance and their feedback
is necessary in order to adapt the learning environment to
individual learning prerequisites in an optimal way. How-
ever, in order to enable young learners to experience new
technologies, learn programming and see its impacts in a real
life-size smart home, the present study establishes a sound
basis.

Smart Homes Programming IDC ’19, June 12–15, 2019, Boise, ID, USA

ACKNOWLEDGMENTS
This work was partially funded by the German Federal Min-
istry for Education and Research (BMBF) within the project
SMILE under grant number 01FP1613. The authors would
like to thank for this support.

SELECTION AND PARTICIPATION OF CHILDREN
Twenty students, ages 12 to 14 years old, participated in
this study. Math teachers suggested the group of interested
students and came with them to the German Research Center
for Artificial intelligence (DFKI). Necessary permissionswere
taken from the school. Students’ parents were informed and
participation consent was obtained.

REFERENCES
[1] David Bau. 2015. Droplet, a blocks-based editor for text code. Journal

of Computing Sciences in Colleges 30, 6 (2015), 138–144.
[2] David Bau, D Anthony Bau, Mathew Dawson, and C Pickens. 2015.

Pencil code: block code for a text world. In Proceedings of the 14th
International Conference on Interaction Design and Children. ACM, 445–
448.

[3] Andrew D Birrell and Bruce Jay Nelson. 1984. Implementing remote
procedure calls. ACM Transactions on Computer Systems (TOCS) 2, 1
(1984), 39–59.

[4] Tim Bray. 2017. The javascript object notation (json) data interchange
format. Technical Report.

[5] K-12 Computer Science Framework Steering Committee. 2016. K-
12 computer science framework. (2016). Retrieved from
http://www.k12cs.org; [Online; accessed 07-January-2019].

[6] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D
tool for introductory programming concepts. In Journal of Computing
Sciences in Colleges, Vol. 15. Consortium for Computing Sciences in
Colleges, 107–116.

[7] Stefania Druga, Randi Williams, Hae Won Park, and Cynthia Breazeal.
2018. How smart are the smart toys?: children and parents’ agent
interaction and intelligence attribution. In Proceedings of the 17th ACM
Conference on Interaction Design and Children. ACM, 231–240.

[8] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. 2003. Themany faces of publish/subscribe. ACM computing
surveys (CSUR) 35, 2 (2003), 114–131.

[9] Ian Fette. 2018. The websocket protocol. https://tools.ietf.org/html/
rfc6455. [Online; accessed 07-January-2019].

[10] Neil Fraser. 2014. Google blockly-a visual programming editor. URL:
http://code.google.com/p/blockly. Accessed Sep (2014). Now available at
https://developers.google.com/blockly/; [Online; accessed 10-January-
2019].

[11] Francisco J Gutierrez, Jocelyn Simmonds, Nancy Hitschfeld, Cecilia
Casanova, Cecilia Sotomayor, and Vanessa Peña-Araya. 2018. Assess-
ing software development skills among K-6 learners in a project-based
workshop with scratch. In Proceedings of the 40th International Con-
ference on Software Engineering: Software Engineering Education and
Training. ACM, 98–107.

[12] Brian Harvey and Jens Mönig. 2010. Bringing "no ceiling" to scratch:
Can one language serve kids and computer scientists. Proc. Construc-
tionism (2010), 1–10.

[13] Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and evalua-
tion of a rapid programming system for service robots. In The Eleventh
ACM/IEEE International Conference on Human Robot Interaction. IEEE
Press, 295–302.

[14] MIT App Inventor. 2018. MIT App Inventor Homepage. http://
appinventor.mit.edu/explore/. [Online; accessed 10-January-2019].

[15] MakeCode. 2018. MakeCode Homepage. https://www.microsoft.com/
en-us/makecode. [Online; accessed 10-January-2019].

[16] Cecilia Martinez, Marcos J Gomez, and Luciana Benotti. 2015. A com-
parison of preschool and elementary school children learning com-
puter science concepts through a multilanguage robot programming
platform. In Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 159–164.

[17] Mblock. 2018. Mblock Homepage. http://www.mblock.cc. [Online;
accessed 10-January-2019].

[18] Bruce M McLaren, Tamara van Gog, Craig Ganoe, David Yaron, and
Michael Karabinos. 2014. Exploring the assistance dilemma: Compar-
ing instructional support in examples and problems. In International
Conference on Intelligent Tutoring Systems. Springer, 354–361.

[19] David Mioduser and Sharona T Levy. 2010. Making sense by build-
ing sense: Kindergarten children’s construction and understanding
of adaptive robot behaviors. International Journal of Computers for
Mathematical Learning 15, 2 (2010), 99–127.

[20] Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. 2003. Per-
spectives on standardization in mobile robot programming: The
Carnegie Mellon navigation (CARMEN) toolkit. In Intelligent Robots
and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, Vol. 3. IEEE, 2436–2441.

[21] Brad A Myers. 1986. Visual programming, programming by example,
and program visualization: a taxonomy. In ACM sigchi bulletin, Vol. 17.
ACM, 59–66.

[22] Brad A Myers. 1990. Taxonomies of visual programming and program
visualization. Journal of Visual Languages & Computing 1, 1 (1990),
97–123.

[23] Vivek Paramasivam, Justin Huang, Sarah Elliott, and Maya Cakmak.
2017. Computer Science Outreach with End-User Robot-Programming
Tools. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. ACM, 447–452.

[24] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and
other difficulties in introductory programming: a literature review.
ACM Transactions on Computing Education (TOCE) 18, 1 (2017), 1.

[25] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. 2009. Scratch: programming
for all. Commun. ACM 52, 11 (2009), 60–67.

[26] Ron JCM Salden, Kenneth R Koedinger, Alexander Renkl, Vincent
Aleven, and Bruce M McLaren. 2010. Accounting for beneficial ef-
fects of worked examples in tutored problem solving. Educational
Psychology Review 22, 4 (2010), 379–392.

[27] Chris Scollo and Sascha Shumann. 1999. Professional PHP programming.
Wrox Press Ltd.

[28] Mazyar Seraj, Serge Autexier, and Jan Janssen. 2018. BEESM, a block-
based educational programming tool for end users. In Proceedings
of the 10th Nordic Conference on Human-Computer Interaction. ACM,
886–891.

[29] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li,
David C Shepherd, and Diana Franklin. 2018. Evaluating CoBlox: A
Comparative Study of Robotics Programming Environments for Adult
Novices. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. ACM, 366.

[30] David Weintrop and Nathan Holbert. 2017. From blocks to text and
back: Programming patterns in a dual-modality environment. In Pro-
ceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. ACM, 633–638.

[31] David Weintrop and Uri Wilensky. 2017. Between a Block and a Type-
face: Designing and Evaluating Hybrid Programming Environments.
In Proceedings of the 2017 Conference on Interaction Design and Children.
ACM, 183–192.

[32] David Weintrop and Uri Wilensky. 2017. Comparing block-based and
text-based programming in high school computer science classrooms.
ACM Transactions on Computing Education (TOCE) 18, 1 (2017), 3.

[33] Rui Zhi, Nicholas Lytle, and Thomas W Price. 2018. Exploring Instruc-
tional Support Design in an Educational Game for K-12 Computing
Education. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. ACM, 747–752.

https://tools.ietf.org/html/rfc6455.
https://tools.ietf.org/html/rfc6455.
http://appinventor.mit.edu/explore/.
http://appinventor.mit.edu/explore/.
https://www.microsoft.com/en-us/makecode.
https://www.microsoft.com/en-us/makecode.
http://www.mblock.cc.

	Abstract
	1 Introduction
	2 Background and Related Work
	Visual Programming
	Primitives and Smart Environments

	3 Overview of the Application
	Smart Home
	Primitives
	Application Interface
	Compilation and Execution

	4 Pilot Study
	Design
	Tasks
	Procedure
	Measures

	5 Findings
	Ease of Use
	Effectiveness
	Students' Feedback

	6 Discussion
	Implications

	7 Conclusion
	Acknowledgments
	SELECTION AND PARTICIPATION OF CHILDREN
	References

