Divide and Verify: Using a Divide-and-Conquer
Strategy for Polynomial Formal Verification of
Complex Circuits

Rolf Drechsler!:2

Alireza Mahzoon?

Hnstitute of Computer Science, University of Bremen, Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{drechsle, mahzoon} @uni-bremen.de

Abstract—With the rapid growth in the size and complexity of
digital circuits, the possibility of bug occurrence has significantly
increased. In order to avoid the enormous financial loss due to the
production of buggy circuits, using scalable formal verification
methods is essential. The scalability of a verification method
for a specific design is proven by showing that the method has
polynomial space and time complexities. Unfortunately, not all
verification methods have a polynomial complexity, particularly
when it comes to the verification of large and complex designs.

In this paper, we propose a divide-and-conquer strategy for
Polynomial Formal Verification (PFV) of complex circuits. Instead
of using a monolithic proof engine to verify the entire design, we
break the verification task down into several problems, which
can be solved in polynomial space and time using a hybrid proof
engine. As a case study, we investigate the PFV of the ALU in a
RISC-V processor using our divide-and-conquer strategy.

I. INTRODUCTION

Recently, the verification community has achieved many
successes in proving the correctness of a wide variety of digital
circuits. Several formal methods based on equivalence check-
ing, model checking, and theorem proving have been proposed
to verify both combinational and sequential circuits. However,
the main shortcoming of these techniques is unpredictability
in performance, leading to several verification problems:

« It cannot be predicted before actually invoking the veri-
fication tool whether it will successfully terminate or run
for an indefinite amount of time.

o The scalability of these techniques remains unknown,
i.e., it is not predictable how much the run-time and the
required memory increase when the size of the circuit
Srows.

« It is not possible to compare the performance of verifi-
cation methods for a specific design and choose the best
one.

In order to resolve the unpredictability of a verification
method, its time and space complexities have to be calculated.
Knowing the complexity bounds for a verification technique
alleviates the three aforementioned verification problems. We
are particularly interested in space and time complexities with
the smallest possible polynomial order, i.e. O(n¢), where n
is a circuit parameter (e.g. the number of input bits) and
c is a positive number. The concept of Polynomial Formal
Verification (PFV) was first introduced in [1], where the author
proved that PFV can be applied to three adder architectures
using Binary Decision Diagrams (BDDs). Shortly, the com-
plexity bounds for the verification of various circuits were
calculated and new PFV techniques were proposed [2], [3],

[4], [5], [6]. A formal verification method with polynomial
complexity bounds (time and space), where the exponent in
the polynomial is not too high, is scalable and can be carried
out successfully for different circuit sizes [7].

Modern digital circuits consist of several sub-components.
For example, a RISC-V processor is made of several sub-
components, including an Arithmetic Logic Unit (ALU) to
carry out arithmetic and logic operations. It is usually the case
that a monolithic proof engine cannot ensure the correctness of
the entire circuit in polynomial space and time. For example,
a word-level proof engine cannot be used for the PFV of the
entire RISC-V processor. In this paper, we propose a divide-
and-conquer strategy to make the PFV of complex modern
systems possible. Our approach takes advantage of a hybrid
proof engine that includes both bit- and word-level formal
techniques. Thus, the correctness of each block or system
task can be ensured in polynomial space and time using a
specific verification approach from the environment. We take
advantage of the ALU in a RISC-V processor as a case
study in order to demonstrate the success of our strategy in
PFV of complex circuits. It is an important step toward PFV
of highly complex designs, e.g., Central Processing Units
(CPUs), Digital Signal Processing (DSP) blocks, and Al-
synthesized architectures.

II. PFV USING A DIVIDE-AND-CONQUER STRATEGY

In this section, we first introduce our divide-and-conquer
strategy for PFV. Then, we present a case study to illustrate
the application.

A. Overview

Despite the progress in PFV of various circuits, most of the
works are still limited to the polynomial verification of indi-
vidual components, e.g., adders, and are based on a monolithic
proof engine. Thus, the PFV of complex systems, consisting
of many different sub-components, is an almost unexplored
area. The challenge originates from the fact that a verification
method (e.g., equivalence checking using BDDs) might verify
a sub-component (e.g., an adder) in polynomial time but
have an exponential verification complexity for another sub-
component (e.g., a multiplier).

We propose a divide-and-conquer strategy for PFV of com-
plex circuits. Instead of using a monolithic proof engine to
verify the entire design, we break the verification task down
into several problems, which can be solved in polynomial



select

ALU

2n

Fig. 1. Symbolic representation of the ALU

TABLE 1
LIST OF SUPPORTED OPERATIONS

So  S§1  So | function
0O 0 O 0...0
0O 0 1 b—a
o 1 o0 a—2>b
0 1 1 a+b
1 0 0 axb
1 0 1 adb
1 1 0 aVb
1 1 1 alNb

space and time using a hybrid proof engine. Each sub-
component or system task can be verified using a suitable
formal approach that ensures PFV. Consequently, PFV can be
applied to complex circuits which could not be verified using
a single formal method in polynomial space and time. We take
advantage of BDDs and Symbolic Computer Algebra (SCA) as
our bit-level and word-level verification methods in our hybrid
proof engine, since their polynomial upper-bounds have been
proven for a wide variety of circuits (see e.g., [3], [4], [5],

[8D).

B. Case Study: PFV of the ALU in a RISC-V Processor

An ALU is a combinational digital circuit that performs
arithmetic and bitwise operations on integer binary numbers.
The type and the number of supported operations in an
ALU depend on the application. Fig. 1 shows the symbolic
representation of an ALU. It receives two n-bit inputs a and
b. The operation between the inputs is determined by an m-
bit select. Finally, the result of the operation is returned as a
2n-bit output.

Here, we consider a simplified ALU with 8 operations,
i.e. the select signal has 3 bits. The complete list of supported
operations is depicted in Table I. The ALU can perform three
arithmetic operations (i.e., addition, subtractions, and multi-
plication) as well as three bitwise logic operations (i.e., XOR,
OR, and AND). The ALU can be used in a RISC-V processor
to carry out logic and arithmetic operations.

We now discuss the results of verifying the ALU using a
monolithic proof engine without using the proposed strategy:

o BDD-based verification reports very good results when
it comes to ensuring the correctness of various adder
architectures. It has been proven in [1] that carry look-
ahead adder can be verified in polynomial space and time
using BDDs. PFV can be also applied to the subtractor,
since it is built by adding XOR gates to the inputs of
the adder. However, BDD-based verification runs out of
memory when it comes to the verification of multipliers.

It has been proven in [9] that the size of output BDDs
becomes exponential for a multiplier. As a result, a
monolithic proof engine based on BDDs cannot be used
for the PFV of the entire ALU.

e SCA-based verification has shown very good results for
the verification of structurally simple multipliers. The
experimental results demonstrated the efficiency of SCA-
based verification in proving the correctness of million-
gate multipliers [10]. In addition, it has been shown that
the PFV of structurally simple multipliers is possible us-
ing SCA [5]. However, SCA-based methods run quickly
out of memory when it comes to the verification of adders
that are not only made of half-adders and full-adders. The
authors of [5] have proven that the size of intermediate
polynomials becomes exponential during the verification
of a carry look-ahead adder. As a result, a monolithic
proof engine based on SCA cannot be used for the PFV
of the entire ALU.

We can overcome the limitations of monolithic proof en-
gines in verifying the ALU by using our divide-and-conquer
strategy: The verification of logic operations (AND, OR, and
XOR) as well as addition and subtraction is performed using
BDDs in polynomial space and time. Moreover, the SCA-
based method is used for the PFV of the multiplication opera-
tion. As a result, the entire ALU can be verified polynomially.

III. CONCLUSION

In this paper, we propose a divide-and-conquer strategy for
PFV. Complex digital circuits usually consist of many sub-
components, which can be verified in polynomial space and
time using a suitable verification technique. However, the PFV
cannot be guaranteed using a monolithic proof engine. This
problem can be alleviated by breaking down and introducing a
hybrid proof engine that integrates bit- and word-level formal
methods in one environment. Thus, each sub-component or
system task is verified using one of the formal methods in
polynomial space and time. We discussed the success of our
strategy in the PFV of an ALU.

In the future, we plan to investigate the PFV of other
complex digital circuits using the divide-and-conquer strategy.

ACKNOWLEDGEMENT

This work was supported by DFG within the Reinhart
Koselleck Project PolyVer (DR 287/36-1).

REFERENCES

[1] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,” in
DDECS, 2021, pp. 99-104.
[2] R. Drechsler, A. Mahzoon, and L. Weingarten, “Polynomial formal verification of
arithmetic circuits,” in ICCIDE, 2021, pp. 457-470.
[3] A. Mahzoon and R. Drechsler, “Late breaking results: Polynomial formal verifi-
cation of fast adders,” in DAC, 2021, pp. 1376-1377.
[4] A. Mahzoon and R. Drechsler, “Polynomial formal verification of prefix adders,”
in ATS, 2021, pp. 85-90.
[5] R. Drechsler, A. Mahzoon, and M. Goli, “Towards polynomial formal verification
of complex arithmetic circuits,” in DDECS, 2022, pp. 1-6.
J. Kleinekathdfer, A. Mahzoon, and R. Drechsler, “Polynomial formal verification
of floating point adders,” in DATE, 2023.
[7]1 R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensuring correct-
ness under resource constraints,” in /ICCAD, 2022.
[8] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-level verification
of arithmetic circuits,” in MEMOCODE, 2021, pp. 1-9.
[9] R. E. Bryant, “On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication,” TC, vol. 40,
no. 2, pp. 205-213, 1991.
[10] A. Mahzoon, D. GroBe, and R. Drechsler, “RevSCA-2.0: SCA-based formal
verification of non-trivial multipliers using reverse engineering and local vanishing
removal,” TCAD, pp. 1573-1586, 2022.

[6



