
Efficient Binary Decision Diagram Manipulation by
Reducing the Number of Intermediate Nodes

Rune Krauss
University of Bremen

Bremen, Germany
krauss@uni-bremen.de

Mehran Goli
University of Bremen

Bremen, Germany
mehran@uni-bremen.de

Rolf Drechsler
University of Bremen / DFKI

Bremen, Germany
drechsler@uni-bremen.de

Abstract—The complexity of hardware systems has increased
significantly in recent decades. Due to increasing user require-
ments, there is a need to develop more efficient data structures
and algorithms to guarantee the correct behavior of such systems.
A Reduced Ordered Binary Decision Diagram (BDD) is a suitable
data structure as it represents all Boolean functions canonically
given a variable order as well as provides algorithms for efficient
manipulation. However, BDDs also have challenges: practicability
depends on their minimization and there is a large memory
consumption for some complex functions.

To address these issues, this work investigates the number of
emerged intermediate nodes that are not used in the final BDD
result and presents a novel approach for efficient BDD manipula-
tion by reducing the number of such nodes. Experiments on BDD
benchmarks show that peak BDD node sizes can be significantly
reduced, leading to accelerated BDD manipulation.

Index Terms—Boolean functions, binary decision diagrams,
software packages, formal verification, model checking

I. INTRODUCTION

Moore’s law describes that the number of transistors in
Integrated Circuits (ICs) doubles every two years [1]. Due
to technological progress, billions of transistors are nowadays
present in Very Large Scale Integration (VLSI) circuits that can
be found, i. a., in smartphones used by today’s society. As ICs
become more complex, VLSI design cannot be created without
Computer-Aided Design (CAD), making it an essential part of
the hardware design process known as VLSI CAD [2].

In order to meet time-to-market constraints and to guarantee
the quality of VLSI CAD, continuous algorithmic improve-
ments in the field of verification are necessary. Model checking
is an important approach to assess the correctness of hardware
systems through state exploration and property checking [3].
Traditionally, data structures have been implemented that
explicitly consider system states [4]. Thus, only automata with
at most 106 reachable states could be processed [5]. However,
since real models consist of billions of states, they cannot
be considered in a reasonable amount of time [6]. Reduced
Ordered Binary Decision Diagrams (BDDs) [7] are suitable
for this application as they can compactly encode Boolean
functions and allow efficient algorithms, such as reachability
analysis, leading to a breakthrough in this technique [8].

This work was supported by DFG within the Reinhart Koselleck Project
PolyVer (DR 287/36-1).

Therefore, extensive research has been conducted to im-
prove verification techniques by developing components that
are combined in BDD packages [9]. Components include, i. a.,
BDD manipulation by the If-Then-Else (ITE) algorithm, hash-
based Computed Tables (CTs) for caching operations, Unique
Tables (UTs) with collisions resolved by chaining to identify
all existing nodes, and Garbage Collection (GC) methods to
remove unused (dead) nodes [10].

Although a BDD is an efficient data structure for Boolean
functions, there are existing challenges: practicability depends
on their minimization and there is a large memory con-
sumption for some complex functions like multipliers [11],
[12]. Firstly, the final BDD size of many functions like
adders depends on the variable order [13], [14]. Secondly,
when logical operations are performed repeatedly during BDD
manipulation, the number of UT nodes temporarily used for
final BDD construction, called Intermediate Nodes (Inodes),
can dramatically increase, leading to memory overflow, so that
subsequent operations such as reachability analysis cannot be
performed [15], [16], [17], [18], [19], [20].

To address these issues, in this paper we investigate the
emergence of Inodes and their number during BDD manipula-
tions. Based on these results, we propose a novel approach for
efficient BDD manipulation by reducing the number of Inodes.
Experiments confirm that using this approach can significantly
reduce the greatest number of nodes in use at any point during
the process lifetime, leading to accelerated BDD manipulation
that is on average about 20 % faster compared to the single
use of the ITE algorithm and related work.

In summary, the main contributions are as follows:

1) Investigation of the number of Inode emergences using
Boolean functions;

2) Development of an approach to reduce Inodes and accel-
erate BDD manipulation;

3) Approach evaluation and comparison with related work.

This paper is organized as follows: We summarize the
Boolean function fundamentals and related work in Section II.
Section III investigates Inode emergences and describes the
proposed approach based on observations. In Section IV,
the efficiency of this approach is evaluated and experimental
results are discussed. Finally, Section V concludes the paper.

979-8-3503-3277-3/23/$31.00 ©2023 IEEE

II. BACKGROUND

This section introduces important fundamentals in an at-
tempt to keep this work self-contained. While Section II-A
describes concepts for understanding Boolean functions, Sec-
tion II-B briefly discusses related proposals for increasing the
efficiency of memory use during function manipulations.

A. Preliminaries

In ICs, signals can be symbolized by variables x1, . . . , xn

taking logical values from B := {0, 1}. In statement logic,
0 (1) ∈ B is interpreted as false (true). Thus, outputs
whose values are specified by inputs can be described by
mathematical mappings like Boolean functions.

Definition 1. A mapping f : Bn → Bm is called a Boolean
function, where n,m ∈ N. Bn,m := {f | f : Bn → Bm}
describes the set of Boolean functions, where Bn := Bn,1.

The Boolean calculus [21], the basis for today’s computer
systems, allows computations with Boolean functions as well
as their manipulation and defines algebraic structures.

Definition 2. The quadruple (Bn,+, ·,) with

f + g ∈ Bn := (f + g)(α) = f(α) ∨ g(α)∀α ∈ Bn

f · g ∈ Bn := (f · g)(α) = f(α) ∧ g(α)∀α ∈ Bn

f ∈ Bn := f(α) = 1⇐⇒ f(α) = 0∀α ∈ Bn

is called the Boolean algebra of functions.

Based on Definition 2, properties can be derived including
but not limited to commutative, absorption, resolution, and
annulment laws [22]. Properties come in pairs, i. e. the dual
of a Boolean Expression (BE) – a common representation of
Boolean functions – is obtained by interchanging + with · and
0 with 1 [23].

Definition 3. Let Xn = {x1, x2, . . . , xn} be a variable set and
Σ = Xn ∪{0, 1,+, ·, , (,)} be an alphabet. The set BE (Xn)
over Xn is the subset of Σ∗ that is defined inductively:

Identity elements 0 and 1, and variables are BEs.
If g and h are BEs, then the disjunction g + h, conjunc-
tion g · h (gh), and negation g are also BEs.
Nothing else is a BE.

If an IC is modular, a technique such as model checking can
first compute single representations in order to subsequently
combine them [12], enabled by Shannon expansion [24].

Definition 4. Let f ∈ Bn be a n-ary function. The partitioning
f to xi with fxi=1(α1, α2, . . . , αi−1, 1, αi+1, αi+2, . . . , αn)
and fxi=0(α1, α2, . . . , αi−1, 0, αi+1, αi+2, . . . , αn) ∀α ∈ Bn

is called the Shannon expansion

f = xi · fxi=1︸ ︷︷ ︸
positive cofactor

+ xi · fxi=0.︸ ︷︷ ︸
negative cofactor

If variables are successively decomposed using Defini-
tion 4 respecting a total order π and avoiding redundan-
cies/isomorphisms by exploiting laws of Boolean algebra, a
BDD results.

x1

x2

0 1

(a) x1 + x2

x1

x2

0 1

(b) x1 · x2

x1

0 1

(c) x1

Fig. 1: BDDs representing the Boolean basis functions

Definition 5. A BDD is a directed acyclic graph G = (V,E)
over variables Xn := {x1, x2, . . . , xn} and a value set B. Each
node is assigned such a label where a Boolean function f is
interpreted as follows:

If v is labeled with b ∈ B, then the leaf represents the
constant function.
If v is an inner node, it is labeled with xi ∈ Xn, where the
variable is decomposed by xi · fv + xi · fv = (xi, fv, fv)
respecting a total order π : x1 < x2 < . . . < xn, where
fv is the high child and fv is the low child referenced by
the parent v. The edge set E contains all such references.

If (fv)xi
̸= (fv)xi

∀v ∈ V and no distinct nodes v, w ∈ V
exist which are labeled with the same variable and whose
children are identical, then G is called reduced.

Example 1. BDDs for the Boolean functions +, ·, ∈ B2
are shown in Fig. 1: 1) disjunction (Fig. 1a), 2) conjunc-
tion (Fig. 1b), and 3) negation (Fig. 1c).

Remark. The referencing is typically drawn using solid
edges (1-edges) and dashed edges (0-edges).

Applying Definition 4 successively top-down to build a
BDD requires repeatedly performing an equivalence test to
check whether subfunctions are already represented [2]. A
more efficient way is to transform Definition 4 using Boolean
algebra laws and combine nodes via

f ⊗ g = xi · (fxi=1 ⊗ gxi=1) + xi · (fxi=0 ⊗ gxi=0),

where ⊗ ∈ B2. These operations can be traced back to

ITE (f, g, h) = f · g + f · h

that computes If f Then g Else h such as f+h = ITE (f, 1, h),
which is compatible with Definition 4 because of

f · g + f · h = (xi, ITE (fxi
, gxi

, hxi
), ITE (fxi

, gxi
, hxi

)).

The resulting triple corresponds to Definition 5 and formu-
lates the conventional divide-and-conquer Algorithm 1 [25]
that constructs BDDs by a sequence of logical operations
starting from single nodes. At first, terminal cases are checked
in Line 1. Using a CT, Lines 2–4 check if an operand
combination has already been computed. Otherwise, two co-
factors are computed in Lines 5–7 decomposing according
to the previously determined order of variables. Lines 8–10
check for isomorphism. In Line 11, canonicity is ensured by
either finding or adding the computed triple into the UT ut .

Algorithm 1: Conventional BDD manipulation operator ITE

Input: BDDs f, g, h
Output: Constructed BDD based on f, g, h

1 . . . ▷ terminal cases
2 if ct .has entry(f, g, h) then
3 return ct(f, g, h)
4 end if
5 x← top variable of f, g, h
6 t← ITE (fxi

, gxi
, hxi

)
7 e← ITE (fxi

, gxi
, hxi

)
8 if t = e then
9 return t

10 end if
11 r ← ut .find or add(x, t, e)
12 ct .insert(f, g, h, r)
13 return r

Node Label Then Else

v0 0 — —
v1 1 — —
v2 x2 v1 v0
v3 x1 v1 v2
v4 x3 v1 v0
v5 x2 v1 v4
v6 x1 v1 v5

(a) UT

x1

v3

x2

v2

1

v1

0

v0

(b) f

x3

v4

1

v1

0

v0

(c) h

x1

v6

x2

v5

x3

v4

1

v1

0

v0

(d) ITE(f, 1, h)

Fig. 2: Performing ITE , where f = x1 + x2 and h = x3

Depending on the current number of dead nodes or if there
is not enough space to add new nodes, a GC is performed
to periodically free unused memory with subsequent table
expansions if necessary. Finally, Line 12 stores the result in
the CT followed by the return of the constructed BDD.

Example 2. Let ρ ∈ B3 with ρ(x1, x2, x3) = x1 + x2 + x3,
where π : x1 < x2 < x3. Fig. 2 illustrates the UT (Fig. 2a)
with BDD nodes after performing ITE (f, 1, h) on the basis
of f = x1 + x2 (Fig. 2b), g = 1, and h = x3 (Fig. 2c),
where Fig. 2d represents the constructed final BDD. It can
be seen that during the BDD manipulation there are no more
references to the nodes v2 and v3, i. e. they are dead.

Based on these components, Algorithm 1 can be carried
out in a time almost linear to the number of BDD nodes
assuming an ideal UT and CT, i. e. checking and storing nodes
in constant time.

B. Related Work

In practical applications, logical operations such as Algo-
rithm 1 are performed successively [5]. Beyond the theoretical
point of view w. r. t. complexity described in the last section,
this can dramatically increase the UT size which leads to a
failure (or a significant slowdown) of the computation caused
by a memory overflow.

Although optimizations for choosing a proper variable order
have been developed in recent years to address this issue [26],
the reduction of intermediate computations has not been in-
vestigated to this extent: While algorithms such as [15] create
BDD nodes only when such are represented in the final result,
there exist approaches like [16] that get final BDDs top-down
and bottom-up. Below is a brief explanation of these methods.

The so-called Multi-way method [15] exploits implicit don’t
cares in a BE including a cube cofactorization by recursively
applying Definition 4 to address wasteful intermediate compu-
tations. For example, when computing a BE like fg+h, each
of f and g can be minimized using h as a don’t care set before
the product is formed. That is, for any subexpression where
h is 1, the final result will also be 1 on that subexpression
regardless of the logical value of f or g. Thus, the creation of
Inodes is prevented and only the final BDD is constructed.

The second method, called XTop [16], first performs a
topological analysis top-down to find good decomposition
points for the IC. To this end, a cut-set is computed by
reducing the number of compositions and dependent variables
w. r. t. the outputs, where a cut-set is a set of gates such that
any path from an IC input to an IC output has to cross through
one of the gates in the IC. Based on selected decomposition
points, single BDDs are then constructed bottom-up using
Algorithm 1, which are finally composed.

Although the aforementioned methods have proven success-
ful for various problems, such as formal design verification and
graph-theoretic problems, they come with some drawbacks:
While with Multi-way from [15] the explosion in the number
of BE operations exists, XTop from [16] has problems with
essential algorithms like dynamic variable ordering. Therefore,
the main goal of this work is to overcome these limitations.

III. REDUCING THE NUMBER OF INTERMEDIATE NODES

In this section, we describe the core development from
our investigation to the approach of reducing the number of
Intermediate Nodes (Inodes). First, the emergence of Inodes
and their number are investigated in Section III-A. Second,
in Section III-B, we present our approach to allow systematic
reduction of the number of Inodes.

A. Investigation of the number of emerged Inodes

In BDD packages, complicated BEs in the form of BDDs
are constructed by logically combining single BDD nodes
using Algorithm 1. If combining is performed conventionally,
this can lead to unnecessary memory and runtime overhead
due to intermediate results that are not in the final BDD.

Considering Example 2, for the construction of x1+x2+x3

first f = x1 + x2 is built, which is afterwards combined with
h = x3 via logical disjunction. However, the problem with
this combination is that two Inodes (v2, v3) emerge since they
are not used in the final BDD (Fig. 2d).
Remark. In the case of dead nodes, it is not clear during BDD
manipulation whether they are finally intermediate, since they
can be reactivated and thus also be in the final result [11].
Every Inode is dead, but not every dead node is intermediate.

x1

v6

x2

v5

x3

v4

1

v1

0

v0

x1

v3

x2

v2

h1

2

3

4

(a) ITE(f, 1, h)

x1

v4

x2

v3

x3

v2

1

v1

0

v0

h′

(b) ITE(f ′, 1, h′)

Fig. 3: ITE constructions for x1+x2+x3, where f = x1+x2,
h = x3, f ′ = x3 + x2, and h′ = x1

Via an ITE walkthrough, it can be observed why these
Inodes emerge and how they can be prevented, which is
illustrated in Fig. 3: Respecting the order π : x1 < x2 < x3,
it is shown in Fig. 3a that h must be “transported” to the
intended level 3 in the BDD, causing references to change,
and v2 and v3 to become intermediate. If, taking commu-
tativity into account as shown in Fig. 3b, f ′ = x3 + x2

is constructed first and then combined with h′ = x1, no
Inode results since there is no recursive descent and h′ can
be “docked” directly. This observation applies analogously
to logical conjunction ITE (f, h, 0) because of the principle
of duality mentioned in Section II-A, i. e. only the edge
redirections need to be swapped. For negation it is sufficient
to swap only the 1-edges and 0-edges.

Remark. Binary operators, by themselves, do not perform in-
termediate computations nor create unnecessary nodes. Thus,
it makes no difference for this investigation whether ITE or
related algorithms such as APPLY [2] construct BDDs.

Generally, the order in which the operands are processed can
drastically affect the memory and thus the runtime since the
ITE recursion terminates in a specific branch depending on
the combination for an operand: for example, for conjunction
the value 0 applies, for disjunction if an operand becomes 1.

Another weakness of a conventional BDD manipulation be-
comes apparent by possible simplifications using the Boolean
algebra laws (Section II-A).

Example 3. Let ρ ∈ B3, ρ(x1, x2, x3) = x1x3+x2+x1, and
π : x1 < x2 < x3. Anticipating the absorption law, ρ can be
simplified to x2 + x1. Fig. 4 shows performing ITE (f, 1, h)
based on f = x1x3 + x2 (Fig. 4a) and h = x1 (Fig. 4b).
During the recursion steps, it is detected that the node v3
already contained in the UT can be absorbed making v5 and
v6 isomorphic and thus mergeable as illustrated in Fig. 4c.

The findings from Example 3 can easily be transferred to
other laws such as the resolution laws. An extreme case occurs
when, e. g., a BE like fg+h is constructed where h = 1. Then
the construction of fg is wasted since the final BDD is only the
1-leaf. This obviously becomes worse as the BE grows longer.
Analogous to the operand order, redundancies can also have
negative effects on memory and runtime.

x1

x2

v5

x2

v6

x3

v3

10

(a) f

x1

10

(b) h

x1

x2

10

(c) ITE(f, 1, h)

Fig. 4: Absorption detection during ITE (f, 1, h) manipula-
tion, where f = x1x3 + x2 and h = x1

Algorithm 2: Preprocessing approach Sortify to reduce the
number of Inodes during BDD manipulation

Input: BE f
Output: Sorted simplified BE based on f

1 #pragma omp parallel
2 #pragma omp master
3 sort(fbegin , fend)
4 simplify(f)

In summary, the operand order should already be observed
before the BDD manipulation and redundancies should be
discovered as early as possible in order to reduce the number
of Inodes.

B. Proposed Approach To Reduce the Number of Inodes

BDDs are constructed on the basis of combining single
nodes during BDD manipulation. Due to our observations from
the last section, (unnecessary) Inodes emerge during BDD
manipulation for two main reasons: 1) poorly selected operand
order and 2) redundancies.

As explained in Section II-B, intermediate computations
are completely prevented in [15]. However, there is usually a
high rebirth rate using well-known techniques such as model
checking [11], i. e. dead nodes that may be intermediate are
often reactivated before a GC which can prevent deep recursive
descents due to caching. In general, it is difficult to predict
the “value” of a created node [19]. Therefore, Inodes are
permitted up to a certain threshold value in [16]. However,
due to the direct integration into the BDD manipulation there
are problems with the dynamic variable ordering.

We propose a parallel preprocessing approach called Sortify,
using w. l. o. g. OpenMP [27], as a heuristic to reduce the
number of Inodes during BDD manipulation as shown in
Algorithm 2. To this end, we are oriented to Quicksort [28],
one of the fastest sorting algorithms. To address issue 1), a BE
is sorted using a predefined sort key invoked by a master thread
of a parallel region (Lines 1–3). To address issue 2), the sorted
BE is searched neighbor by neighbor to simplify (Line 4).

Algorithm 3: Sorting method sort for Boolean subexpressions

Input: BE iterators fbegin , fend
Output: Sorted BE f

1 . . . ▷ terminal cases
2 p← median(fbegin , fbegin + (fend − fbegin)/2, fend)
3 fleft ← fbegin
4 fright ← fend
5 i← fbegin + 1
6 while i ≤ fright do
7 if kπ(i, p) then
8 swap(fleft , i)
9 ++fleft

10 ++i
11 else if kπ(p, i) then
12 swap(fright , i)
13 −−fright
14 else ++i
15 end if
16 end while
17 if δ(fbegin , fend) ≥ c then
18 #pragma omp taskgroup
19 {
20 #pragma omp task
21 if δ(fbegin , fleft) > 0 then
22 sort(fbegin , fleft − 1)
23 end if
24 #pragma omp task
25 if δ(fright , fend) > 0 then
26 sort(fright + 1, fend)
27 end if
28 }
29 else ▷ serial sorting
30 end if

The main idea (Algorithm 3) is to divide a BE into three
subsequent partitions consisting of subexpressions that are
less, equal to, or greater than a preselected subexpression p
of the entire BE picked by the median of three based on the
first, middle, and last subexpression (Lines 1–2). Primarily,
there is now a single pass through each subexpression, from
left to right (Lines 3–6). Each subexpression is compared to
p, with the sort key kπ following the variable order π. There
are three main cases that are handled: If a subexpression
is less than p, this subexpression is swapped to the left
partition (Lines 7–10), otherwise if a subexpression is greater
than p, it is swapped to the right partition (Lines 11–13), else
nothing is swapped (Lines 14–16). Afterwards, the left and
right partitions are recursively sorted in the same way. Since
the sorting of the left and right partitions is independent, it
can be parallelized by two concurrent tasks. To reduce the
number of parallel recursive tasks that are scheduled, the cut-
off c (100,000 according to [27]) is introduced. Before concur-
rency it is checked if the current number of subexpressions δ
to be sorted reaches c (Line 17). If this is the case, then
the recursive descent is performed in parallel (Lines 18–28),
otherwise serial (Lines 29–30).

To simplify the BE, its order is now exploited and, similar to
finding prime implicants of the Quine McCluskey method [29],
the subexpressions are compared neighbor by neighbor in one
“round” to see if Boolean algebra laws can be applied.

Compared to Quicksort, Sortify allows to reduce the best-
case complexity from linearithmic O(n log n) to linear O(n),
where n is the number of subexpressions. This is achieved by
counteracting unbalanced partitions via the selection procedure
and avoiding unnecessary recursive calls using three partitions.
Since there is no logic minimization, but the subexpressions
are only compared neighbor by neighbor after sorting, this
effort is negligible. In addition, Sortify is parallelized and
cache-coherent greatly affecting the CPU’s cache pipeline.

IV. EXPERIMENTAL RESULTS

This section summarizes the experiments conducted in order
to empirically analyze our approach. While Section IV-A
describes the setup used for the evaluations. Section IV-B
presents the impact of our approach compared to related work.

A. Experimental Setup
Our preprocessing approach was implemented in C++20 as

w. l. o. g. EDDY [30] was used as BDD package for perfor-
mance evaluation. To allow a fair comparison, the methods
discussed in Section II-B were directly integrated into EDDY.
For representative purposes, IWLS-93 benchmark instances
were taken from [31]. The initial UT (CT) size was set
to 220 (218) due to the complexity of the instances. Using
these instances, peak node usage N – the greatest number
of nodes in use at any point during the process lifetime –
was measured during the BDD manipulation and effects on
CPU time T (in sec) were recorded, both reported as node
ratio NR and time ratio TR. The used variable order follows
the order of appearance in the respective file. All evaluations
were carried out on a Fedora 28 machine with an Intel Xeon
E3-1270 v3 CPU with 3.5 GHz and 32 GB of main memory.
For each instance, 10 runs were performed and the average was
calculated. The Time Out (TO) was set to 10 min, whereas the
Memory Out (MO) was configured to a node limit of 1 M.

B. Performance Evaluation
The experimental results can be seen in Table I and confirm

that our approach meets the objectives of this work. Sortify is
able to significantly reduce the number of Inodes for all con-
sidered benchmark instances thereby accelerating BDD manip-
ulation due to a lower number of recursive descents, GC calls,
UT/CT expansions, and hash collisions. As a preprocessing
method for ITE , it results in peak node usage being reduced
by about 29 % compared to single usage (Conventional). This
accelerates the runtime by about 23 %. While minimally more
nodes are needed compared to Multi-way, Sortify is about
19 times faster due to better cache performance which is a
successful compromise. In addition, Sortify is stable in solving
these instances: While XTop, e. g., has a higher peak node
usage than Conventional to construct the BDD for c5315 due
to poorly selected decomposition points, Sortify always uses a
lower number of nodes at any point during the process lifetime.

TABLE I: Experimental comparison of Sortify and related work in terms of peak node usage and CPU time

Instance Conventional Multi-way XTop Sortify Conv./Sortify Multi-way/Sortify XTop/Sortify
Name N T N T N T N T NR TR NR TR NR TR

des 21,449 0.52 13,455 5.88 21,316 0.52 15,209 0.45 1.41 1.16 0.88 13.07 1.40 1.16
rot 14,038 0.43 9,781 4.60 13,805 0.35 10,228 0.16 1.37 2.69 0.96 28.75 1.35 2.19
c880 15,452 0.47 10,757 2.42 13,674 0.28 11,497 0.19 1.34 2.47 0.94 12.74 1.19 1.47
c1355 46,238 0.65 32,768 3.98 40,233 0.52 34,105 0.37 1.36 1.76 0.96 10.76 1.18 1.41
c1908 24,854 0.54 18,201 2.93 24,032 0.38 22,193 0.24 1.12 2.25 0.82 12.21 1.08 1.58
c2670 322,988 4.47 167,241 86.87 259,734 4.13 184,179 3.61 1.75 1.24 0.91 24.06 1.41 1.14
c3540 405,544 5.39 292,834 97.84 393,867 5.20 318,223 4.52 1.27 1.19 0.92 21.65 1.24 1.15
c5315 39,983 0.64 30,992 13.96 40,577 0.76 33,109 0.55 1.21 1.16 0.94 25.38 1.23 1.38
c6288-12 256,878 2.28 — TO 208,887 2.13 176,092 1.83 1.46 1.25 — — 1.19 1.16
c6288-13 732,667 9.27 — TO 611,420 8.81 428,977 7.02 1.71 1.32 — — 1.43 1.25
c6288-14 MO — — TO MO — 926,563 31.97 — — — — — —

Total (1–8) 890,546 13.11 576,029 218.48 807,238 12.14 628,743 10.09 1.40 1.65 0.92 18.58 1.27 1.39

N Peak node usage T CPU time in sec NR Node ratio TR Time ratio

V. CONCLUSION

This paper focused on investigating the number of Inode
emergences using Boolean functions in order to reduce them
and accelerate BDD manipulation. By observing the variable
order and detecting redundancy, our developed approach can
significantly reduce the number of Inodes and is on average
about 20 % faster compared to the single use of ITE and
related work as demonstrated by experiments.

In addition to the consideration of further benchmark in-
stances and study of various parameters, future research will
be directed towards integrating our approach directly into the
BDD manipulation, e. g., to detect redundancies structurally in
order to try to further improve the manipulation.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated circuits,” IEEE
Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, 2006.

[2] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design. Springer, 2012.

[3] C. Baier and J. Katoen, Principles of Model Checking. The MIT Press,
2008.

[4] E. Clarke, E. Emerson, and A. Sistla, “Automatic verification of finite-
state concurrent systems using temporal logic specifications,” ACM
Transactions on Programming Languages and Systems, vol. 8, no. 2,
pp. 244–263, 1986.

[5] S. Chaki and A. Gurfinkel, BDD-Based Symbolic Model Checking.
Springer, 2018.

[6] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
model checking: 1020 states and beyond,” Information and Computa-
tion, vol. 98, no. 2, pp. 142–170, 1992.

[7] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[8] K. McMillan, Symbolic Model Checking. Springer, 1993.
[9] G. Janssen, “A consumer report on BDD packages,” in Proceedings of

the 16th Symposium on Integrated Circuits and Systems Design. IEEE
Computer Society, 2003, pp. 217–222.

[10] R. Drechsler and D. Sieling, “Binary decision diagrams in theory
and practice,” International Journal on Software Tools for Technology
Transfer, vol. 3, no. 2, pp. 112–136, 2001.

[11] B. Yang, R. Bryant, D. O’Hallaron, A. Biere, O. Coudert, G. Janssen,
R. Ranjan, and F. Somenzi, “A performance study of BDD-based model
checking,” in Proceedings of the 2th International Conference on Formal
Methods in Computer-Aided Design. Springer, 1998, pp. 255–289.

[12] T. van Dijk, E. Hahn, D. Jansen, Y. Li, T. Neele, M. Stoelinga, A. Turrini,
and L. Zhang, “A comparative study of BDD packages for probabilistic
symbolic model checking,” in Proceedings of the First International
Symposium on Dependable Software Engineering, 2015, pp. 35–51.

[13] R. Drechsler, “PolyAdd: Polynomial formal verification of adder cir-
cuits,” in 24th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS). IEEE Computer Society,
2021, pp. 99–104.

[14] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensur-
ing correctness under resource constraints,” in Proceedings of the 41st
IEEE/ACM International Conference on CAD. ACM, 2022.

[15] T. Shiple, R. Brayton, and A. Sangiovanni-Vincentelli, “Computing
Boolean expressions with OBDDs,” UC Berkeley, Tech. Rep., 1993.

[16] J. Jain, A. Narayan, C. Coelho, S. Khatri, A. Sangiovanni-Vincentelli,
R. Brayton, and M. Fujita, “Combining top-down and bottom-up ap-
proaches for ROBDD,” UC Berkeley, Tech. Rep., 1996.

[17] A. Hett, R. Drechsler, and B. Becker, “Fast and efficient construction of
BDDs by reordering based synthesis,” in Proceedings of the European
Conference on Design and Test. IEEE, 1997, pp. 168–175.

[18] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of the 34th Annual Design Automation Confer-
ence. ACM, 1997, pp. 263–268.

[19] S. Minato, “Streaming BDD manipulation,” IEEE Transactions on
Computers, vol. 51, no. 5, pp. 474–485, 2002.

[20] S. Sølvsten, J. Pol, A. Jakobsen, and M. Thomasen, “Efficient binary
decision diagram manipulation in external memory,” CoRR, 2021.
[Online]. Available: https://arxiv.org/abs/2104.12101

[21] G. Boole, “The calculus of logic,” The Cambridge and Dublin Mathe-
matical Journal, vol. 3, 1848.

[22] E. Huntington, “Boolean algebra. a correction,” Transactions of the
American Mathematical Society, 1933.

[23] T. Jenkyns and B. Stephenson, Boolean Expressions, Logic, and Proof.
Springer, 2018.

[24] C. Shannon, “The synthesis of two-terminal switching circuits,” The Bell
System Technical Journal, vol. 28, no. 1, pp. 59–98, 1949.

[25] G. Janssen, “Design of a pointerless BDD package,” in International
Workshop on Logic and Synthesis, 2001, pp. 310–315.

[26] C. Jiang, J. Babar, G. Ciardo, A. Miner, and B. Smith, “Variable
reordering in binary decision diagrams,” International Workshop on
Logic and Synthesis, 2018.

[27] T. Mattson, “Introduction to OpenMP,” in Proceedings of the ACM/IEEE
Conference on Supercomputing. ACM, 2006.

[28] G. Rahul, P. Sandeep, and Y. Latha, Quicksort Algorithm—An Empirical
Study. Springer, 2020.

[29] A. Majumder, B. Chowdhury, A. Mondai, and K. Jain, “Investigation
on Quine McCluskey method: A decimal manipulation based novel
approach for the minimization of Boolean function,” in International
Conference on Electronic Design, Computer Networks & Automated
Verification (EDCAV), 2015, pp. 18–22.

[30] R. Krauss, M. Goli, and R. Drechsler, “EDDY: A multi-core BDD pack-
age with dynamic memory management and reduced fragmentation,”
in Proceedings of the 28th Asia and South Pacific Design Automation
Conference. ACM, 2023, pp. 423–428.

[31] P. Fišer and J. Schmidt, “A comprehensive set of logic synthesis
and optimization examples,” in Proceedings of the 12th International
Workshop on Boolean Problems, 2016, pp. 151–158.

https://arxiv.org/abs/2104.12101

	Introduction
	Background
	Preliminaries
	Related Work

	Reducing the Number of Intermediate Nodes
	Investigation of the number of emerged Inodes
	Proposed Approach To Reduce the Number of Inodes

	Experimental Results
	Experimental Setup
	Performance Evaluation

	Conclusion
	References

