Leveraging the Analysis for Invariant
Independence in Formal System Models

Nils Przigoda®

Robert Wille!2

Rolf Drechsler!2

LGroup for Computer Architecture, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{przigoda,rwille,drechsle} @informatik.uni-bremen.de

Abstract—Formal models, based on modeling languages such
as UML in combination with constraint languages such as
OCL, allow for an abstract description of a system prior to
its implementation. But since the resulting models are often
rather complex, redundancies in terms of model descriptions
which can directly be implied from already existing constraints
can easily arise. In particular, OCL invariants are affected by
this. In order to efficiently detect those, methodologies for the
analysis for invariant dependence have recently been proposed.
However, they have severe limitations with respect to scalability,
automation, and quality of the determined results. In this work,
we aim for leveraging the analysis for invariant independence
in formal systems models by addressing these drawbacks. For
this purpose, a new methodology based on the exploitation
of powerful solving engines as well as a complete analysis
scheme is proposed. Experimental evaluations confirm that the
proposed solution is significantly faster and leads to a much
better quality of the results.

Keywords-UML/OCL Models,
Model Analysis

Invariant Independence,

I. INTRODUCTION

With increasing complexity of today’s electronic systems,
researchers started to investigate the integration of model-
ing languages in the design of hardware systems such as
embedded systems [1], [2]. As an example, in the context
of hardware/software co-design, systems are specified first
on a high level of abstraction, before they are being parti-
tioned into respective hardware- and software-components
in a later step. Modeling languages, such as the Unified
Modeling Language (UML [3]) as one of the best-known
representatives, received much attention in this regard.

UML allows for the specification of formal models, i.e., a
detailed description of a system at a high level of abstraction
before precise implementation steps are performed. For this
purpose, UML provides appropriate models which hide pre-
cise implementation details while being expressive enough
to specify a complex system. Within UML, the Object Con-
straint Language (OCL [4]) enables the enrichment of the
respective models by textual constraints which adds further
information to the description. The usage of OCL makes
it possible to define invariants which restrict valid system
states or describe further properties as well as relations
between the specified components.

The resulting models are often designed by large teams
and are composed of various components including classes,

relations, and constraints, e.g., given by invariants. This
usually leads to non-trivial descriptions where redundancies,
i.e., model descriptions which can directly be implied from
already existing constraints, can easily arise. Those redun-
dancies are often not obvious to the designer but significantly
hinder the further design process as they keep the amount
of description means to be considered unnecessarily large.
In particular, invariants are affected by this.

As a consequence, researchers and engineers started to
investigate how corresponding dependent invariants can ef-
ficiently be identified or how the independence of invariants
can efficiently be confirmed. Since performing those checks
is a cumbersome task, these efforts eventually lead to the
consideration of methodologies for the analysis for invariant
independence. First accomplishments in this regard have
already been achieved: Corresponding solutions have been
proposed and evaluated in [5], [6] based on the UML-based
Specification Environment (USE, see [7], [8]) and in [9]
based on the theorem prover Isabelle/HOL (see [10], [11]).
However, these approaches — which, to the best of our
knowledge, represent the state-of-the-art in independence
analysis — have severe limitations with respect to scalability,
automation, and quality of the determined results (this is
discussed in more detail later in Section IV).

In this work, we aim for leveraging the analysis for invari-
ant independence in formal systems models by addressing
the drawbacks of previously proposed approaches. For this
purpose, a fully automatic approach is proposed which
efficiently determines either the independence of an invariant
or determines the reasons for its dependency. To tackle the
underlying complexity, powerful solving engines such as
SMT solvers (e.g., Z3 [12]) are exploited. By exhaustively
analyzing all possible reasons in a clever fashion, the quality
of the obtained results is significantly improved. In fact,
our approach eventually delivers all minimal reasons for all
dependencies and, by this, significantly supports the designer
in removing the corresponding redundancies.

The advantages of the proposed solution compared to
previous work has been confirmed in an experimental eval-
uation. It is shown that independence analysis is performed
significantly faster and with better results. While previously
proposed approaches often determine no explicit reasons for
a dependency, our solution guarantees them in a minimal

inv il: bs.forAll(b |
b.y =2 x x)

|
1
A as bs B
x: Integer |* v: Integer
T

!
1

inv 12: as.forAll(a Ij

*

a.x =y / 2)

Figure 1: A simple model

A1:A| |B1:B A1:A| |B1:B
x=2||y=4 x=2||y=3

o(il) = true
o(i2) = true

o(il) = false
o(i2) = false

(a) Valid (b) Invalid

Figure 2: System states

fashion. As a result, analysis for invariant independence is
leveraged with respect to automation, scalability, and quality.

The remainder of this work is structured as follows. The
following section provides the basics and notations used in
this work. The problem of independence in formal models is
introduced in Section III, while a straight-forward approach
for that including a discussion of related work is reviewed
in Section IV. Afterwards, our solution is described in detail
in Section V and results of our evaluation are summarized
in Section VI. Section VII concludes the paper.

II. PRELIMINARIES

In order to keep the paper self-contained, this section
provides a brief review on UML/OCL and introduces the
notation used to describe the respective models and system
states.

Definition 1 (Model): A model M = (C,R) represented
in terms of a class diagram is a tuple of classes C and
relations R (also known as associations). A class ¢ € C may
contain attributes and operations. A relation r € R describes
the connection between two classes ¢, co € C. Besides that,
the model can additionally be enriched by textual constraints
which can be provided in OCL. Such textual constraints are
called invariants. The set of all OCL invariants of a model
is denoted by Z. Each invariant ¢ € 7 is associated to a
class c € C.

Example 1: Figure 1 shows a model M composed of two
classes A, B € C which are connected by a relation r € R.
Invariants 11 and i2 restrict the values with which attributes
of the classes can be assigned.

Models represent a blueprint for possible instantiations
of a system. Formally, instantiations can be represented in
terms of system states which, depending on the invariants,
might be valid or not.

Definition 2 (System states): Let M = (C,R) be a
model with invariants Z. An instantiation of M is called
a system state, i.e., for each class ¢ € C a corresponding
number of objects is derived which altogether satisfy the
relations R. A single system state is denoted by o, while
the set of all possible system states is denoted by X'.

A system state satisfies a given invariant ¢ € Z, if the
respective expression is satisfied for all objects derived from
the associated class ¢ € C. This is evaluated through a
function f defined by:

FSxT—B

if ¢ holds for o
false, else

true
(0,i) oe

For a fixed state o € X, the shorthand notation o (3) is used
instead of f(c,). A system state is called valid if it satisfies
all invariants; otherwise is is called invalid.

Example 2: Consider again the model in Figure 1. Two
possible system states derived from this model are shown
in Figure 2: a valid system state satisfying all invariants is
provided in Figure 2a; an invalid system state violating both
invariants, 11 and 12, is provided in Figure 2b.

III. INDEPENDENCE IN FORMAL MODELS

During the design of complex systems, the clear and
precise definition of constraints and requirements is crucial.
Description means as reviewed in the previous section, in
particular invariants, are particularly suited for this purpose.
In order to preserve the design understanding, engineers aim
to keep the respective specifications indeed complete and
comprehensive but, at the same time, as compact as possible.
But with increasing complexity of the considered design
as well as a rising number of involved engineers, often
specifications result which are more complex than necessary.

In fact, invariants are frequently introduced which are
supposed to add new constraints and/or requirements but
actually are already covered by previously added invariants.
This redundancy, which often is not obvious to designers,
significantly hinders the further design process as it keeps the
amount of invariants to be considered in the following design
steps unnecessarily large. Motivated by that, the detection of
dependent invariants (or the confirmation that all invariants
are independent) has become an important task in early steps
of today’s design flows.

INote, that we assume a fix number of instantiations and attribute
assignments, i.e., the set of all possible system states is bounded. This
is a reasonable assumption considering that at least for the concrete
implementation of the considered model, finite bounds are applied anyway.

Cc

inv il: 3 <= a and a <= 4
a:lnteger| -1 inv i2: 7 <= b and b <= 8
b: Integer inv 13: 6 <= b and b <= 9
(@
c1:C o(il) = false c1:.C o(il) = true
a=5|0(i2) = true a=3|0(i2) = false
b=7 b=3
(b) (©

Figure 3: (In)Dependencies in formal models

Definition 3 (Independence): Let M be a model with
invariants 7 and X the set of all system states derived
from M. Then an invariant i is called independent iff

Joex: N\ oi) A-oliz). (1)

1€\ {in}

Vice versa, an invariant i is called dependent iff Eq. (1)
does not hold.

In other words, Definition 3 states that an invariant is
independent iff it further restricts the set of valid system
states compared to Z \ {ix}, i.e., that at least one system
state which was valid under invariants Z \ {ix} is not valid
anymore under invariant 7.

Example 3: Consider the model given in Figure 3a com-
posed of a single class with two integer attributes a and b.
The set of valid system states is restricted by invariants i1,
i2, and i3. However, invariant i3 does not further restrict
the set of valid system states compared to il and 12,
since all system states valid under i1 and i2 are trivially
valid under 13 as well. Hence, 13 can be discarded. The
remaining two invariants are independent as each of them
further restricts the set of valid system states. As an example,
Figure 3b shows a system state valid under 12, but not 11,
while Figure 3c shows a system state valid under i1, but
not 12.

Detecting dependent invariants (or showing the indepen-
dence of invariants) may significantly simplify the design
process. Invariants proven to be dependent can be discarded
from the model or, at least, do not have to be considered
intensely. On the contrary, if all invariants have been proven
independent, designers know that each and every constraint
indeed restricts the desired design behavior further and shall
be considered accordingly. However, analyzing whether a
given model is only composed of independent invariants
(and if not, determining which invariants are dependent) is
a non-trivial task. Consequently, (automatic) methods are
applied for this purpose.

Algorithm 1 Analysis for invariant independence
Input: A model M = (C,R)
Input: A set Z of invariants

1: D < 0 // set of detected dependencies

2: for all i, € Z do

3 3o eX: Nieq\ (3 0() A (—o(iy)) then

4 /I i, is independent
5 else

6: /l i is dependent

7 D+ DU {Zk}

8: return D;

IV. ANALYSIS FOR INVARIANT INDEPENDENCE

A straight-forward and simple approach for the analysis
of invariant independence is provided by Algorithm 1. The
algorithm expects a model M together with the correspond-
ing set of invariants Z to be investigated. All dependent
invariants determined during the analysis are stored in a
set D which is returned by the algorithm.

First, it is assumed that the model does not include
dependent invariants, i.e., D is initialized with an empty
set (line 1). Then, all invariants i, in Z are considered
separately (lines 2—7). For each iy, it is checked whether iy,
is independent or not. For this purpose, Definition 3 is
applied, i.e., it is checked whether there is a system state
which is valid under invariants Z \ {ix}, but violates i
(line 3). The actual checks can be conducted by approaches
for the verification and validation of formal models e.g.,
as introduced in [7], [13], [14], [15], [16]. These methods
generate valid system states for a given model including a
set of invariants and can easily be utilized for the purpose
considered here. If such a system state was determined, it has
been proven that ¢, is independent (line 4). In contrast, if no
such system state was obtained, the invariant 4, is considered
as dependent and, hence, added to the set D (lines 5-7).

Example 4: Consider again the model shown in Fig-
ure 3a. As discussed in Example 3, corresponding system
states showing the independence can be found for 11 and 12
(see Figure 3b and Figure 3c, respectively). In contrast, no
system state satisfying 11 and 12 as well as violating i3
can be found. Hence, i3 is considered as dependent.

Approaches for the analysis of invariant independence as
sketched by Algorithm 1 have already been considered in
previous work [5], [6], [9]. However, these approaches have
severe limitations with respect to scalability, automation, and
quality of the determined results.

More precisely, [5], [6] relies on an enumerate approach
for system state generation, i.e., when performing the step
in line 3 of Algorithm 1, all possible states are considered
one after another. Designers may improve this enumeration
by additionally providing programs written in A Snapshot
Sequence Language (ASSL, see [8]) which allows to define

c inv il: a AND b AND c
a: Boolean inv i2: a AND (a IMPLIES b)
b Boolean| ~ |inv i3: b AND (b IMPLIES c)
c: Boolean inv i4: ¢ AND (c IMPLIES a)

Figure 4: A model containing dependencies

in which fashion the traversal through the search space is
performed. Besides the fact that this requires a significant
amount of additional manual work, the entire search space
has to be enumerated in the worst case anyway.

In [9], the corresponding problem including the entire
description of the model to be analyzed is translated into
formal semantics for Isabelle/HOL. Then, corresponding
theorem provers are applied to determine the respective
system states from which either dependence or independence
of an invariant can be concluded. While this approach is very
powerful with respect generic conclusions (results might
be obtained which are universal and e.g., do not rely on
bounds for object instantiation), it requires advanced expert
knowledge and heavily relies on manual interaction.

Besides that, strictly following Algorithm 1 also leads to
rather poor results as illustrated by the following example.

Example 5: Consider the model given in Figure 4. Using
Algorithm 1, it is observed that all invariants are dependent.
Consequently, D = {i1, i2, i3, i4} will be returned
by the algorithm. While this result indeed is correct (in
fact, each invariant could be covered by one or more of
the other invariants), precise reasons are not provided. Since
simply discarding all invariants obviously is not an option,
the designer has to manually check the dependencies in order
to remove redundancy in the invariants.

While obviously the example above is rather artificial,
cases like this frequently occur in the design of complex
systems. The approach in [6] tries to deal with that by
first applying Algorithm 1 and, afterwards, trying to identify
the reason for it. This is done by considering cases again,
for which no system state could be obtained. Then, one
invariant after another is deactivated until a plausible reason
has been obtained (cf. [6, Sect. 2]). An alternative relies
on analyzing the set of dependent invariants in detail, but
without considering the full set of remaining invariants [6,
Sect. 3]. In the example above, this would lead to no
result. As a consequence, no reasons for the dependencies
would be detected and the designer would probably try
to discard i1 although discarding i2, i3, and 14 would
not only remove the redundancy, but eventually result in a
much more compact model. The approach proposed in [9]
makes a more comprehensive analysis but also here neither
completeness nor minimality of the determined results are
ensured.

Overall, previous approaches do not only suffer from
limitations with respect to scalability and automation but,
in the worst case, also lead to results where the designer is

left with a rather poor understanding about the identified
dependencies. For a comprehensive and fast removal of
redundancies, an independence analysis is required which
(1) does provide a complete set of dependent invariants
together with (2) a minimal list of the reason for each
dependency.

V. PROPOSED SOLUTION

In this work, we aim for leveraging the analysis for in-
variant independence in formal system models by addressing
the drawbacks of previously proposed approaches discussed
above. We introduce an automated approach which does
not rely on any manual interaction at all. Scalability is
improved by utilizing efficient solving engines rather than
enumerative methods. Finally, the quality of the results is
improved by performing a more advanced analysis of the
respectively considered invariants which eventually leads to
the complete determination of dependencies together with
their respective minimal reasons. In this section, details of
the proposed solution are provided. For this purpose, an
advanced problem formulation for independence analysis
is provided first. Afterwards, the improved algorithm is
presented.

A. Advanced Problem Formulation

In order to address the drawbacks mentioned above, the
original problem formulation for independence analysis (see
Definition 3) is enriched by a definition of a minimal reason
for a dependency.

Definition 4 (Minimal Reason for a Dependency):

Let M be a model with invariants Z and ¥ being the set of
all system states derived from M. Furthermore, let iy, € 7
be a dependent invariant according to Definition 3. Then,
the reason for this dependency is a subset I C T \ {ix}
which satisfies

Voex: \oli)=olir). 2)

iel
Furthermore, a reason [is called minimal, iff

VICT:3oeXn:)\ a(j) A-olir) 3)
jeJ
also holds.

In other words, Definition 4 states that a subset I C 7\
{ix} of invariants is a reason, if for all system states o € X
the satisfaction of the invariants I also implies the satisfac-
tion of the invariant 7;. Minimality is guaranteed by the fact
that removing just one invariant from a reason I (leading
to J € I) would allow for at least one system state o where
Eq. (2) does not hold (for J instead of I). For such a system
state, all the invariants of a subset J are satisfied while 7,
is violated.

Algorithm 2 Analysis for dependency of i
Global Var.: A set R of
(initialized R « 0)

minimal reasons

analyze_dependency(/)
Input: A subset I of invariants
1: minimal_reason < true
2: for all J C I with |J| =|I|—1 do
3 if JoeX:\jc;0() A (no(ix)) then
4 /' J is not a reason
5 else
6: // J is a reason smaller than I, i.e. I is not minimal
7 manimal_reason < false
8 analyze_dependency(J)
9: if minimal_reason then
0. R+ RU{I}
11: return

—

Example 6: Consider again, the model given in Figure 4.
Instead of providing a simple set D = {il, i2, i3, i4}
of dependent invariants as discussed in Example 5, applying
the advanced definition additionally provides some evidently
minimal reasons, e.g.,

e 12 is dependent on i1 (i.e., 11 = 1i2),

e 13 is dependent on il (i.e., i1 = i3), and

e 14 is dependent on il (i.e., i1 = i4).

Obviously, considering these minimal reasons helps the
designer much better in removing redundancies from the
model. Based on that, it is clear that 12,13, 14 can be
removed.

B. Determining Minimal Reasons for Dependent Invariants

In order to additionally determine the minimal reasons
for a dependent invariant 7;, a more thorough analysis is
required. For this purpose, an extension to Algorithm 1
for independence analysis is proposed: Whenever an in-
variant ¢, € Z has been shown dependent (line 7 in
Algorithm 1), another analysis of this particular dependency
is performed. To this end, a (recursive) procedure as sketched
in Algorithm 2 is proposed.

The algorithm gets the subset of invariants I = Z\ {iy} as
input and determines all minimal reasons for the dependent
invariant ;2. These reasons are stored in a global variable R
which is initialized as an empty set. Since 5 was shown to
be dependent (using Algorithm 1), I = Z\ {ix} obviously is
a reason for that. It is additionally assumed that I is minimal;
stored in a Boolean variable minimal_reason (line 1). Then,
it needs to be analyzed whether smaller reasons exist or not.

For this purpose, all subsets J C I which are one
element smaller than I are considered (line 2). For each

2Note, that more than one minimal reason may exist for a dependent
invariant ig.

of these subsets, it is checked whether it still is a reason
for the dependent invariant ¢; (line 3), i.e., whether Eq. 2
from Definition 4 holds. As in Algorithm 1, approaches
for the verification and validation of formal models e.g.,
as introduced in [7], [13], [14], [15], [16] can be utilized
for this purpose. This requires a slight re-formulation of
the condition: Instead of showing that J is a reason (i.e.,
the satisfaction of invariants J implies the satisfaction of
invariant 7 in all system states), it is determined whether .J
is not a reason (i.e., whether a system state exists which
satisfies J but not iy).

If J is indeed not a reason, then the assumption that I is
minimal remains valid, i.e., the iteration through all subsets
simply continues (line 4). Otherwise, a reason with a smaller
number of invariants than I has been determined. Conse-
quently, minimal_reason is immediately set to false (line 7)
and the algorithm is recursively called to analyze further
subsets smaller than J (line 8). The process terminates if all
subsets have been considered. If no smaller reason has been
determined, i. e., minimal_reason remained true (line 9), the
currently considered set I of invariants has proven to be
minimal and is accordingly added to R (line 10).

Algorithm 2 completely solves the problem formulated
in the previous section. However, a major bottleneck is the
check in line 3 which is computationally expensive with
respect to both the complexity of each single check but also
the quantity of all checks to be conducted. This is addressed
as follows:

o Complexity

As discussed in Section IV, previously proposed ap-
proaches for the analysis of independence relied on
enumerative methods [S], [6] or theorem provers [9]
with a significant amount of manual interaction.

We propose to tackle the complexity by relying on
powerful solving engines such as SMT solvers (e.g.,
Z3 [12]). For this purpose, the respective verification
problems (is there a system state satisfying or not
satisfying certain invariants) are translated into corre-
sponding propositional formulas as described in [16].
Afterwards, an SMT solver is applied to solve the
problem. Since they do not enumerately traverse the
search space but employ intelligent decision heuristics,
powerful learning schemes, and efficient implication
methods, they handle the complexity much faster while,
at the same time, require no manual interaction.

o Quantity

Strictly following Algorithm 2 might lead to a large
number of checks to be conducted — many of those
might be redundant. This is avoided by keeping track
of previously performed checks: The results of all
checks conducted in line 3 are stored in a corresponding
global data-structure. If the same subset of invariants
is considered again, simply the previously determined
result is re-used.

Table I: Evaluation of the runtime performance

[Model name [ICT TIRI] Z] T]O] | Independent? [[6] | This work |
CAB 1 0 3 1 X <ls <ls
class C2 1 0 4 1 X <ls <ls
class C3 1 0 4 1 X <ls <ls
class C4 1 0 9 1 X <ls 3s
CivStat 1 1 6 4 X 987 s 4s

5 X >12h 3s
6 X >12h 7s
7 X >12h 17 s
8 X >12 h 37 s
9 X >12 h 80 s
10 X >12 h 217 s
Demol 3 3 4 5 v >12 h 3s
Demo2 3 3 7 5 v >12 h 5s
CarRental 9 12 6 5 X >12h <ls
6 X >12 h 2s
7 X >12h 3s
8 X >12h 5s
9 X >12 h 8s
10 X >12 h 16 s
PerCom 3 4 5 5 v >12 h 6s
Simple-CPU 6 6 9 5 v >12 h 9s

Legend:
|C|: Number of classes |R|: Number of relations
Independent?: All invariants in the model are independent (v") or not (X)

Due to the fact that, for a subset J — which has been
classified not to be a reason — the determined system
state also offers the information that all subsets of .J are
not a reason as well, this data-structure allows for an
efficient and fast processing of the algorithm. By this,
the total number of actually performed checks can be
reduced significantly.

Following these schemes, the proposed solution addressed
the main drawbacks of state-of-the-art approaches for in-
variant independence analysis, i.e., scalability, automation,
and quality of the determined results. This has also been
confirmed in an experimental evaluation whose results are
summarized next.

VI. EXPERIMENTAL EVALUATION

In order to evaluate the proposed solution, the algo-
rithms described above including its optimizations have been
implemented in Xtend as an Eclipse plugin. Z3 [12] has
been utilized as SMT solver for the respective checks in
line 3 of Algorithm 1 and line 3 of Algorithm 2. As
benchmarks, we applied UML/OCL models taken from the
USE package [7]°. All experiments have been carried out on
an Intel i5 with 2.6 GHz cores and 16 GB memory using a
3.11 kernel Linux.

A. Evaluation of the Runtime Performance

In a first series of experiments, we evaluated the perfor-
mance of the proposed solution with respect to the required
runtime. Since we aimed for a fully-automatic approach for

3Including models considered in previous work [6] in addition to further
models not considered before.

|Z|: Number of invariants

|O|]: Maximal number of considered object instantiations per class
[6]/This work: Runtime of the respective approach

independence analysis, we did not compare our approach to
the solution proposed in [9] (which heavily relies on manual
interaction and, hence, is not comparable) but to the solution
proposed in [6].

Table I summarizes the obtained results. The first columns
provide the name of the respective models followed by
their number of classes (|C|), their number of relations
(IR]), their number of invariants (|Z|), their maximal number
of considered object instantiations per class (|O|), and an
indication whether the invariants in the model are inde-
pendent (denoted by v') or not (denoted by x) under the
respective configuration (Indep?). Note, that the models
CivStat and CarRental have been considered with more than
one configuration (i. e., number of object instantiations) and,
hence, corresponding results are reported in several rows in
Table I. Afterwards, the respective runtime (in CPU-seconds)
needed for performing the independence analysis is reported
for the approach from [6] as well as the approach presented
in this work.

The numbers clearly show that the proposed solution is an
improvement compared to state-of-the-art method from [6].
For all models, an independence analysis is performed
significantly faster. For most of the considered cases, the
previously proposed approach was not able to determine a
result within the given time limit of 12 hours while our
solution completed all the analyses in just a couple of
minutes. At the same time, the proposed approach was even
able to determine much better results which is discussed
next.

B. Quality of the Results

In a second series of experiments, we evaluated the quality
of the obtained results — again including a comparison to
the solution from [6]. For this purpose, the results obtained
for the five models for which the approach presented in [6]
terminated within the given time limit have been investigated
in more detail.

Table II provides a corresponding summary, i. e., lists the
results of the respective analyses. The right-hand side of
the respective terms represent the respectively determined
dependent invariants of the model, while the left-hand side
represent their reasons. Note, that in the proposed solution
all reasons have been shown to be minimal. This is not the
case for results obtained by [6]. In cases where [6] did not
determine a reason, all remaining invariants (i.e., Z \ {ix})
have been considered as a reason. In case of the model class
C4, we omitted an explicit listing of all determined results.
Instead only the total number of determined reasons are
presented.

Also here, very clear conclusions can be drawn. While
the previously proposed approach determines all dependent
invariants for the models CAB, class C2, class C3, and
class C4, no explicit reasons are provided in these cases.
As discussed before in Section IV, this may lead to rather
poor design decisions, e. g., the removal of invariants which
better should remain in the model. In contrast, the proposed
approach leads to all minimal reasons from which, as
discussed in Example 6 (see Section V-A), redundancy can
be removed in a significantly better fashion. Moreover, in
case of CivStat it can even be observed that the previously
proposed solution does not necessarily detect all dependent
invariants. In fact, only invariant 16 was detected as depen-
dent; but invariants i3 and i4 are dependent as well in this
case.

VII. CONCLUSION

In this work, we leveraged the analysis for invariant
independence in formal system models by addressing the
main drawbacks of previously proposed solutions: scala-
bility, automation, and quality of the determined results.
For this purpose, a new methodology based on a complete
analysis scheme as well as based on the exploitation of
powerful solving engines has been proposed. The exper-
imental evaluation showed that this enabled an automatic
analysis of independence within seconds or minutes, while
previously proposed solutions were not able to determine
a result within hours. At the same time, the quality of
the results is improved. For the first time, minimal reasons
for dependencies have been determined, while previous
approaches often provide no or only incomplete and non-
minimal reasons.

Table II: Quality of the results

[Model name [[6] [This work |
CAB 13 = 11 13 = 11
class C2 Z\{iu}=>u 14 = 11
I\{i2}2>i2 ’i4:>i2
I\{i3}éi3 i4 = 13
I\{i4}:>i4 il,ig,i3:>i4
class C3 12,13 = 11
I\{il}:>i1 i3,i4:>i1
19,14 = 11
. . 13,14 = 12
T RN
\{12}:>22 11 = 12
. . 19,14 = 13
IZ\A{izs} = N
\ { 3} 3 11 = 13
. . 12,13 = 14
I\A{ia} =1 2
\{ia} = ia i1 = s
class C4 #9 # 96
CivStat 13,14 = 16 13,14 = 16
11,14,1%6 = 13
11,13,16 = 14
12,13,16 = 4

The right-hand side of the respective terms represent the respectively
determined dependent invariants of the model, while the left-hand
side represent their reasons. For class C4, only the total number of
dependencies are listed.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry
of Education and Research (BMBF) within the project
SPECIfIC under grant no. 01IW 13001, the German Research
Foundation (DFG) within the Reinhart Koselleck project
under grant no. DR 287/23-1 and a research project under
grant no. WI 3401/5-1, the Graduate School SyDe funded
by the German Excellence Initiative within the University of
Bremen'’s institutional strategy as well as the Siemens AG.

REFERENCES

[1] Y. Vanderperren, W. Miiller, and W. Dehaene, “UML for elec-
tronic systems design: a comprehensive overview,” Design
Automation for Embedded Systems, vol. 12, no. 4, pp. 261-
292, 2008.

[2] G. Martin and W. Miiller, UML for SOC Design. Secaucus,

NJ, USA: Springer-Verlag New York, Inc., 2005.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, Eds., The Unified
Modeling Language reference manual. Essex, UK: Addison-
Wesley Longman Ltd., 1999.

[4] J. Warmer and A. Kleppe, The Object Constraint Language:
Precise modeling with UML. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[5] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency,
Independence and Consequences in UML and OCL Models,”
in TAP, ser. Lecture Notes in Computer Science, C. Dubois,
Ed., vol. 5668. Springer, 2009, pp. 90-104.

[6] M. Gogolla, L. Hamann, and M. Kuhlmann, ‘“Proving and
visualizing OCL invariant independence by automatically
generated test cases,” in TAP, ser. Lecture Notes in Com-
puter Science, G. Fraser and A. Gargantini, Eds., vol. 6143.
Springer, 2010, pp. 38-54.

(71

(8]

(9]

(10]

(11]

[12]

M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-
based specification environment for validating UML and
OCL,” Science of Computer Programming, vol. 69, no. 1-3,
pp. 27-34, 2007.

M. Gogolla, J. Bohling, and M. Richters, “Validating UML
and OCL models in USE by automatic snapshot generation,”
Software and System Modeling, vol. 4, no. 4, pp. 386-398,
2005.

A. D. Brucker and B. Wolff, “Semantics, calculi, and analysis
for object-oriented specifications,” Acta Inf., vol. 46, no. 4, pp.
255-284, 2009.

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, ser. Lecture Notes in
Computer Science. Springer, 2002, vol. 2283.

M. J. C. Gordon and T. F. Melham, Eds., Introduction to
HOL: A Theorem Proving Environment for Higher Order
Logic. New York, NY, USA: Cambridge University Press,
1993.

L. M. de Moura and N. Bjgrner, “Z3: an efficient SMT

[13]

[14]

[15]

[16]

solver,” in Tools and Algorithms for Construction and Analy-
sis of Systems, ser. Lecture Notes in Computer Science, C. R.
Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008,
pp. 337-340.

J. Cabot, R. Claris6, and D. Riera, “Verification of UML/OCL
Class Diagrams using Constraint Programming,” in ICST
Workshops. 1EEE Computer Society, 2008, pp. 73-80.

K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,
“UML2Alloy: A Challenging Model Transformation,” in
MoDELS, ser. Lecture Notes in Computer Science, G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil, Eds., vol. 4735.
Springer, 2007, pp. 436—450.

E. Torlak and D. Jackson, “Kodkod: A relational model
finder,” in TACAS, ser. Lecture Notes in Computer Science,
O. Grumberg and M. Huth, Eds., vol. 4424. Springer, 2007,
pp. 632-647.

M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and
R. Drechsler, “Verifying UML/OCL models using Boolean
satisfiability,” in Design, Automation and Test in Europe.

IEEE Computer Society, 2010, pp. 1341-1344.

