
Using Higher Levels of Abstraction for Solving
Optimization Problems by Boolean Satisfiability

Robert Wille Daniel Große Mathias Soeken Rolf Drechsler
Institute of Computer Science

University of Bremen, 28359 Bremen, Germany
{rwille,grosse,msoeken,drechsle}@informatik.uni-bremen.de

Abstract
Optimization problems can be solved using Boolean Sat-

isfiability by mapping them to a sequence of decision prob-
lems. Therefore, in the last years several encodings have
been developed. Independently, also new solvers have been
introduced lifting Boolean Satisfiability to higher levels of
abstraction, e.g. SAT Modulo Theories (SMT) solvers and
word level solvers. Both support bit-vector logic and thus
allow more compact encodings of the problems.

In this paper we investigate the efficiency of these new
solver paradigms applied to optimization problems. We
show for two case studies – graph coloring and exact syn-
thesis of reversible logic – that the resulting problem in-
stances can be reduced with respect to the size. In addition
for the synthesis problem significant run-time improvements
can be achieved.

1. Introduction
In the last ten years techniques for solving instances of

the Boolean Satisfiability (SAT) problem have been inten-
sively studied. The SAT problem is to determine whether
there exists a solution for a given Boolean formula or not.
Taking the original DPLL algorithm [4] as a basis, re-
searchers investigated conflict based learning [15], efficient
implication routines [16], and strong heuristics [10] leading
to well-engineered SAT solvers [8]. State-of-the art SAT
solvers are able to handle instances with more than hun-
dreds of thousands of variables and clauses. As a result
SAT solvers are used today in different areas, e.g. in for-
mal verification, automatic test pattern generation or logic
synthesis.

However, common SAT solvers work on the Boolean
level, i.e. the considered problems have to be encoded
in terms of clauses. Due to the increasing complexity
of these problems, recently several approaches have been
studied which lift the problem instances to higher levels
of abstraction (see e.g. [6]). This results in the develop-
ment of SAT Modulo Theories (SMT) [3, 7] and word level
solvers [5, 24, 9]. Since both solver paradigms support bit-
vector logic, a more abstract problem description is possi-
ble. Hence, two advantages are expected:

1. A much more compact problem representation since
instances can be encoded with the help of bit-vectors

and bit-vector operations instead of Boolean variables
and clauses, respectively.

2. More efficient algorithms since the higher level of ab-
straction can also be exploited for dedicated strategies
and heuristics.

But even if a large number of new solvers have been intro-
duced in this area (see e.g. [18]), until now their application
to real world scenarios is still at the beginning. As one ex-
ample in [2] SMT is used for the verification of software.
In [14] the authors considered predicate abstraction with
SMT while word level solvers have been applied e.g. for
functional test generation in [27]. The encoding effort to
represent circuit verification problems at different levels of
abstraction has been studied in [20].

In this work we consider the application of the high-level
SAT paradigm for optimization problems. Although for this
kind of problems specialized techniques are available (see
e.g. [17]), application of Boolean SAT has been shown to
be very successful [12, 23]. Using SAT the optimization
problem is solved by mapping it to a sequence of decision
problems. Since many optimization problems are inherently
non Boolean problems, we investigate if the usage of the
higher level of abstraction is more efficient.

More precisely, we encode two representatives of opti-
mization problems (the graph coloring problem and the ex-
act synthesis of reversible logic using Toffoli gates) as in-
stances of bit-vector logic and compare them with the re-
spective representation in terms of clauses. It is shown that
for both optimization problems significant reductions of the
problem representation result, if the bit-vector encoding is
used. Furthermore, while for graph coloring the overall run-
time remains in the same range, speed-ups of up to three
orders of magnitudes can be achieved for synthesis of re-
versible logic.

The paper is structured as follows: In the next section
solvers for Boolean Satisfiability and the new abstractions
(i.e. SMT and word level solvers) are introduced. After
this, the main flow of solving optimization problems with
the help of SAT is described in Section 3. Here also the
importance of the used encoding is sketched. Section 4 pro-
vides the investigated case studies: (1) the problem is briefly



introduced, (2) the problem formulation and encodings for
SAT and bit-vector logic are discussed, and (3) experimen-
tal results are given. Finally, the paper is concluded in Sec-
tion 5.

2. Different SAT Abstractions
In this section the basic concepts of SAT, SMT and word

level solvers are introduced. The Boolean Satisfiability
(SAT) problem is defined as follows:

Definition 1 Let f be a Boolean function. Then SAT is to
determine whether there exists a satisfying assignment α to
all variables of f such that f(α) = 1. In this case f is
satisfiable; otherwise f is unsatisfiable.

In general the Boolean function f is given in Conjunctive
Normal Form (CNF), i.e. a product-of-sum representation.
The CNF is a conjunction of clauses. A clause is a disjunc-
tion of literals and each literal is a propositional variable or
its negation.

In past several (backtracking) algorithms (so called SAT
solvers) have been proposed [4, 15, 16, 10, 8]. Most of
them are based on three essential procedures: (1) The de-
cision heuristic assigns values to free variables, (2) the
propagation procedure determines implications due to the
last assignment(s) and (3) the conflict analysis tries to re-
solve conflicts by backtracking that occur during the search.
Advanced techniques like e.g. efficient Boolean constraint
propagation [16] or conflict analysis [15] are common in
state-of-the-art SAT solvers today.

The tremendous improvements in the performance of
SAT solvers enables the consideration of problems with
more than hundreds of thousands of variables and clauses.
Thus, SAT is widly used in many application domains.
Thereby, the real world problem is transformed into CNF
and then solved by using a SAT solver as black box.

However, due to the increasing complexity of many
problems, researchers investigated the use of higher levels
of abstractions than CNF – by still exploiting the established
SAT techniques. This leads to the development of SAT Mod-
ulo Theories (SMT) and dedicated word level solvers.

In SMT (e.g. [3, 7]) a traditional SAT solver is combined
with decision procedures for decidable theories (e.g. linear
arithmetic or bit-vector logic). While the SAT solver tries to
find a satisfying assignment to an abstract representation of
the problem (in CNF), the theory solver checks this assign-
ment with respect to the underlying theory. Thus, advanced
SAT techniques as well as higher problem abstractions are
utilized. In contrast word level solvers either work directly
on the word level of the problem (e.g. [5, 24]) or bitblast it
to a traditional SAT solver (e.g. [9]).

In these solvers the higher level of abstraction is ex-
pressed e.g. by bit-vector logic. Since we use bit-vector
logic in this paper we give some basic definitions in the fol-
lowing:

Definition 2 A bit-vector is an element ~b =
(bn−1, . . . , b0) ∈ Bn. The index [ ] : Bn × [0, n) → B

maps a bit-vector ~b and an index i to the ith component of
the vector, i.e. ~b[i] = bi. Conversion from (to) a natural
number is defined by nat : Bn → N (bv : N → Bn)
with N = [0, 2n) ⊂ N and nat(~b) := Σn−1

i=0 bi · 2i

(bv := nat−1).
Problems can be constraint by using bit-vector opera-

tions as well as arithmetic operations. Let ~a,~b ∈ Bn be two
bit-vectors. Then, the bit-vector operation ◦ ∈ {∧,∨, . . . }
is defined by ~a◦~b := (~a[n−1]◦~b[n−1], . . . ,~a[0]◦~b[0]). An
arithmetic operation • ∈ {∗,+, . . . } is defined by ~a •~b :=
nat(~a) • nat(~b).

SAT solvers as well as SMT and word level solvers con-
sider decision problems, i.e. problems which only allow yes
or no (true or false, holds or fails, etc.) as answer. The
next section describes how SAT can be used to solve opti-
mization problems as well. After this, Section 4 shows by
two case studies the benefits of applying higher levels of
abstractions if optimization problems are considered.

3. Solving Optimization Problems Using SAT
A decision problem is to find an arbitrary solution such

that a given question/formula is satisfied. In contrast opti-
mization problems try to find the best of these solutions with
respect to the resulting costs.

Definition 3 Given a problem p with a set S of solutions
for this problem. Let additionally c(p, s) ∈ N be the costs of
the solution s ∈ S for the problem p. Then, an optimization
problem is to determine a solution s for the problem p such
that c(p, s) is minimal (or maximal, respectively).1

For example, in graph coloring the number of colors and
in logic synthesis the number gates is used as the cost cri-
teria, respectively. Both problems are considered in more
detail in the next section.

Each optimization problem can be formulated as a se-
quence of decision problems: In each step – i.e. for each
decision problem – it is asked if there exists a solution for
the problem with fixed costs. More precisely a decision
problem is formulated asking if there is a solution s for the
problem p with costs c and c ∈ N.

Using a straight forward approach, first it is searched for
a solution with costs c = 0. If no solution exists (i.e. if
the decision problem is unsatisfiable), then the costs are in-
cremented until one of the resulting decision problems be-
comes satisfiable. Thereby, minimality is guaranteed since
c is incremented iteratively starting with c = 0. A pseudo-
code of this approach can be found in Algorithm 1. We call
this procedure iterative approach in the following.

However, this approach may lead to too many iterations.
To avoid this an approximation can be used: By exploiting
upper and lower bounds initial costs c = ci are determined.
If there is a solution with costs ci, then a better solution with

1In this work we only consider problems, where c(p, s) has to be min-
imal. Finding solutions with maximal costs can be handled analogously.



Algorithm 1: iterativeApproach(p)
Data: problem instance p
Result: solution s such that c(p, s) is minimal
c = 0;1
while true do2

decProb = encodeDecProb(p, c);3
s = solve(decProb);4
if s == UNSAT then5

c + +;6

else7
return s;8

costs ci′ < ci is searched. Otherwise, the search continues
with higher costs ci′ > ci. The best solution (i.e. the solu-
tion with minimal costs) is found when (1) a solution with
costs cmin is obtained and (2) it is proven that no solution
with costs c′ < cmin exists. One possible realization of this
approach is given in Algorithm 2. We call this procedure
approximation approach in the following.

In both approaches the respective checks (Is there a so-
lution with costs c?) can be done by means of a SAT solver.
Therefore, two steps are performed: First the decision prob-
lem is encoded as a SAT instance in CNF (line 3 in both al-
gorithms). After this, the resulting instance is solved by us-
ing an off-the-shelf SAT solver (line 4 in both algorithms).

Thereby, the used encoding is crucial. To this day in
many approaches, the respective problem formulation has
been encoded as CNF (see e.g. [23] as a recent example).
In general, this is possible in time and space linear in the
size of the original problem formulation [22]. However, the
resulting instances only allow implications at the Boolean
level. Furthermore, often many auxiliary variables are nec-
essary which increases the size of the resulting search space.

In this paper we evaluate the usage of higher levels of
abstraction. In contrast to the existing approaches the re-
spective decision problems are encoded in bit-vector logic
which is supported by several SMT and word level solvers.
As the next section will show, many problem formulations
are naturally given on word level. Thus, using the bit-vector
logic – to represent the word level – all bit-vector variables
and most of the operators are preserved. On the one hand
this simplifies the encoding of the problem. On the other
hand improvements of the overall run-time can result.

4. Case Studies
In this section two representatives of optimization prob-

lems are considered, i.e. the graph coloring problem and ex-
act synthesis of reversible logic. Both problems are solved
using Boolean SAT and SMT with bit-vector logic, respec-
tively.

First, each problem is briefly described. Then, the prob-
lem formulation as a decision problem is given and the en-
coding into a SAT/bit-vector logic instance is described. Fi-
nally, experimental results show the differences of both en-
codings with respect to the problem size and the needed run-

Algorithm 2: approximationApproach(p, l, u)
Data: problem instance p, lower bound l, upper bound u
Result: solution s such that c(p, s) is minimal
repeat1

c = d l+u
2

e;2
decProb = encodeDecProb(p, c);3
s = solve(decProb);4
if s == UNSAT then5

l = c;6

else7
u = c;8

until l 6= u + 1 ;9
return s;10

time for solving. All experiments have been carried out on
an AMD Athlon 3500+ with 1 GB of memory. If not stated
otherwise, for the CNF instances we used the SAT solver
MiniSat [8]. For solving the bit-vector logic instances the
SMT solver Yices [7] has been applied.

4.1. Graph Coloring
The graph coloring problem is defined as follows: Given

an undirected graph G = (V,E), a vertex coloring is the as-
signment of a color to each vertex of G such that no two ad-
jacent vertices have the same color. More formally, a color-
ing is defined as a mapping color : V → [1, k] ⊂ N with
color(v1) 6= color(v2) for each (v1, v2) ∈ E. The graph
coloring problem is to find a minimal number of colors that
leads to a valid vertex coloring, i.e. c := min{k | color :
V → [1, k] and k ∈ N}which is also called chromatic num-
ber. The graph coloring problem has applications e.g. in
register allocation or high-level synthesis.

4.1.1. Problem Formulation. We formulated the deci-
sion problem Is there a coloring for the graph G = (V,E)
with c colors? as basis for the algorithms presented in the
previous section as follows: For each vertex v ∈ V a free
variable xv is introduced representing the color of this ver-
tex. Constraints xv ≤ c ensure that at most c colors are
used. Furthermore, the additional constraints xv 6= xw for
each (v, w) ∈ E guarantee that no adjacent vertices have
the same color.

4.1.2. Bit-vector Encoding. Applying bit-vector logic
the encoding of this formulation is straight forward.
Each variable xv can be represented by a bit-vector of
length dlog2 ce. For the constraints respective bit-vector op-
erations are available. This leads to |V | variables and at
most |E|+ |V | constraints in total.

4.1.3. CNF Encoding. In contrast, to encode the prob-
lem into CNF for each variable xv , dlog2 ce single Boolean
variables are needed (i.e. |V | · dlog2 ce in total). The con-
straints have to be transformed into certain sets of clauses.
In total the constraint xv ≤ c is encoded by 2dlog2 ce − c
clauses for each vertex while the constraint xv 6= xw is en-
coded by 2dlog2 ce clauses for each edge.

4.1.4. Experimental Results. The presented encodings
of the decision problems have been used for both, the iter-



Table 1. Iterative approach for graph coloring
BENCHMARK CNF ENCODING (MINISAT) BIT-VECTOR ENCODING (YICES)

c #VARS #CLAUSES TIME (S) #VARS #BV-CONSTR TIME (S)
anna 11 4,002 92,190 6.00 1,380 10,826 24.87
david 11 2,523 75,255 4.14 870 8,729 21.83
huck 11 2,146 56,030 5.72 740 6,538 22.06
jean 10 2,000 39,192 0.80 720 5,052 4.98
queen8 12 12 3,168 292,800 112.72 1,056 30,864 87.82
miles250 8 2,176 33,404 0.14 896 5,930 0.94
games120 9 2,520 75,688 0.31 960 10,808 0.99
myciel5 6 517 6,418 28.38 235 1,321 122.67

Table 2. Approximation approach for graph coloring
BENCHMARK CNF ENCODING (MINISAT) BIT-VECTOR ENCODING (YICES)

c #VARS #CLAUSES TIME (S) #VARS #BV-CONSTR TIME (S)
anna 11 3,726 166,454 6.32 828 6,744 24.09
david 11 2,523 134,618 3.93 609 6,206 22.08
huck 11 1,776 64,310 9.65 444 4,056 35.90
jean 10 1,680 51,568 1.28 400 2,940 8.16
queen8 12 12 1,824 198,432 105.30 480 13,968 85.85
miles250 8 1,408 22,056 0.19 512 3,352 0.80
games120 9 1,680 62,928 0.56 480 5,464 1.30
myciel5 6 658 9,910 28.44 235 1,368 122.80

ative approach as well as the approximation approach de-
scribed in Section 3. For the latter one we used the fixed
value 2 as lower bound and the total number of vertices as
upper bound, respectively. All graph coloring benchmarks
haven been taken from [13].

The results are shown in Table 1 (for the iterative ap-
proach) and Table 2 (for the approximation approach), re-
spectively. The first two columns denote the name of the
benchmark as well as the resulting minimal costs needed
for coloring the graph (i.e. the chromatic number). The next
columns provide information about the size of the instances
for the CNF encoding and the bit-vector encoding, respec-
tively. Column #VARS gives the number of variables. Col-
umn #CLAUSES provides the number of clauses in the CNF
encoding while column #BV-CONSTR gives the number of
bit-vector constraints of the bit-vector encoding. All these
numbers have been calculated by summing up the respec-
tive numbers over all instances. Finally, in the last column
the overall run-time of the algorithm (in CPU seconds) is
given.

As can be seen for both approaches the bit-vector encod-
ing leads to much more compact problem representations.
On average the CNF encoding needs four times more vari-
ables as the bit-vector encoding. The difference in terms of
constraints is even more significant: One order of magni-
tude more constraints are required by the CNF encoding in
comparison to the bit-vector encoding. However, regarding
the run-time the bit-vector encoding is outperformed in all
benchmarks except queen8 12.

We see two reasons for this result:

1. In the last few years there was a significant progress
in SAT solving techniques. We demonstrate this claim
by additional experiments whose results are given in
Table 3. Here, the same encodings are applied to the
SAT solver siege [19] (in version 4 from 2003) instead

Table 3. Comparison with another SAT solver
BENCHMARK ITERATIVE APPROXIMATION

SIEGE V4 YICES SIEGE V4 YICES
anna 47.57 24.87 44.83 24.09
david 29.22 21.83 29.31 22.08
huck 72.23 22.06 64.69 35.90
jean 13.21 4.98 11.82 8.16
queen8 12 203.67 87.82 196.35 85.85
miles250 0.96 0.94 0.70 0.80
games120 1.75 0.99 1.71 1.30
myciel5 153.77 122.67 153.78 122.80

of MiniSat (version 1.14 from 2005). As can be seen
the bit-vector based approaches now outperform the
SAT encoding. Since the bit-vector logic in the context
of SMT has been considered for a very short time we
expect similar improvements in the near future. This
is approved by the latest results of the SMT competi-
tion [1].

2. We noticed that the considered underlying decision
problem of the graph coloring problem is based on
only a few bit-vector operators which additionally have
very efficient CNF representations. In the next sec-
tion another optimization problem – exact synthesis
of reversible logic – is considered that requires much
more complex constraints involving many different
bit-vector operations. Here, the higher level of abstrac-
tion can be fully exploited which leads to significant
reductions in run-time.

4.2. Exact Synthesis of Reversible Logic
The exact synthesis problem for reversible logic is de-

fined as follows: Given a reversible function specifica-
tion f : Bn → Bn (i.e. a bijective Boolean function with
n inputs and n outputs) the goal is to find a network realiza-
tion of f with the minimal number of gates.



A network realization consists of a cascade of reversible
gates. A widely used reversible gate is the Toffoli gate [21]
which is also applied here. The idea of the Toffoli gate is
to invert one input line (the target line) if the product of a
set of control lines evaluates to true. To make the paper self
contained we give a definition and a simple example.

Definition 4 Let X := {x0, . . . , xn−1} be the set of do-
main variables and T n := {(~c, t) ∈ Bn × [0, n) |~c[t] = 0}.
Then g = (~c, t) ∈ T n is a Toffoli gate on n lines with
control lines defined in ~c and the target line t. The gate
maps (x0, . . . , xn−1) to (x0, . . . , xt ⊕ p, . . . , xn−1) with
p :=

∧
i∈M xi and M := {i ∈ [0, n) |~c[i] = 1}. If M = ∅,

then p := 1.

An example of a Toffoli network with its truth table is
shown in Figure 1. A filled circle denotes a control line
while an open circle denotes a target line. Thus, the net-
work consists of two gates g1 = ((1, 0, 1), 1) and g2 =
((0, 1, 1), 2).

Figure 1. Toffoli network with assignment
Synthesis of reversible logic has applications in low-

power design, optical computing and especially in quantum
computing. In previous work this problem has been consid-
ered using pure Boolean SAT [11].

4.2.1. Problem Formulation. To solve the described
optimization problem of exact synthesis the underlying de-
cision problem is described as follows: Is there a Toffoli
network for the reversible function f with d gates? Since
a Toffoli network manipulates bit-vectors we formulate the
decision problem directly in terms of bit-vector constraints:

The function control : Bn×Bn → B evaluates to true, if
all control lines of a gate (~c, t) are true or there is no control
line, respectively. More formally,

control(~x,~c) =
{

1 iff ~x ∧ ~c = ~c or ~c = bv(0),
0 else.

where ~x is the input of the gate.
Based on this for each gate gk = (~ck, tk) (0 < k ≤ d)

with input ~xk−1 and output ~xk in a network of size d the
following constraint is added to the problem instance:

~xk = ~xk−1 ⊕ bv
(
control

(
~xk−1,~ck

)
· 2tk

)
If the control function becomes 1 for the current input of a
gate the 1 is shifted by the position of the target line and
XOR’ed with the assignment of the gate. This directly cor-
responds to he behavior of a Toffoli gate (see Definition 4).

Since the equation has to hold for each row of the truth
table, this constraint is duplicated 2n times. Furthermore,
for each truth table line the variable ~x0 (~xd) is assigned

to the respective value of the input (output) of the func-
tion to be synthesized. In the overall bit-vector constraint
the only free variables are the ones that define the gates,
i.e. g1 = (~c1, t1), . . . , gd = (~cd, td). If there exists a sat-
isfying assignment for these variables a network realization
with d gates for f has been found.

4.2.2. Bit-vector Encoding. A bit-vector encoding can
be generated easily from the described formalization since
all bit-vector operations are directly available.

4.2.3. CNF Encoding. A CNF encoding is built with the
standard transformation from [22]. For a detailed descrip-
tion see [11].

4.2.4. Experimental Results. Since the approximation
approach cannot be applied for synthesis of Toffoli net-
works (see [11]), only the iterative approach has been ap-
plied in our experiments. As benchmarks we used a selec-
tion of reversible functions from different domains (taken
from [26]).

The results are given in Table 4. Columns BENCHMARK
and d denote the name of the considered function to be syn-
thesized and the resulting costs (i.e. the minimal number of
gates). The sizes of the problem instances can be obtained
by the values in column #VARS and in columns #CLAUSES
or #BV-CONSTR, respectively (again as a sum over all in-
stances). The run-time spent to solve all instances is given
in column TIME. Furthermore, the improvement (with re-
spect to run-time) of the bitvector encoding in comparison
to the CNF encoding is provided in the last column.

In contrast to the graph coloring instances, more signif-
icant differences with respect to the sizes of the bitvector
and the CNF encoding can be observed. For all benchmarks
fewer variables and constraints are needed for the bitvector
representation. For example, to encode the synthesis prob-
lem for graycode6 nearly two millions of CNF variables (9
millions of clauses) are needed – in contrast to 4,458 bitvec-
tor variables (28,089 bitvector constraints).

Moreover, the higher level of abstraction have an effect
on the time needed to solve. On average improvements of
more than a factor of 30 can be documented. In the best
case (graycode6) the run-time can be reduced by more than
three orders of magnitudes.

5. Conclusions
In this paper we evaluated the usage of higher levels of

abstraction for solving optimization problems by Boolean
satisfiability. In two case studies we showed that encoding
the problems in bit-vector logic results in a much more com-
pact problem representation in comparison to the Boolean
level. However, the higher level of abstraction can be fully
exploited by the respective solver only when a problem is
considered that requires many complex constraints. For
graph coloring a run-time advantage for representation in
CNF has been observed. In contrast, using bit-vector logic
in the synthesis of reversible logic leads to speed-ups of
more than three orders of magnitude in the best case.

In the future, we expect further progress in the develop-
ment of more efficient SMT solvers as well as word level



Table 4. Iterative approach for synthesis of reversible logic
BENCHMARK CNF ENCODING (MINISAT) BIT-VECTOR ENCODING (YICES) IMPROVEMENT

d #VARS #CLAUSES TIME (S) #VARS #BV-CONSTR TIME (S)
ham3 5 9,180 37,380 0.60 430 1,940 0.33 1.82
3 17 6 12,828 52,284 0.96 594 2,700 0.93 1.03
hwb4 11 254,540 1,156,672 47,111.40 3,476 18,238 7,133.06 6.60
mod5d1 7 624,036 2,955,904 2,061.59 2,968 17,080 153.92 13.39
graycode6 5 1,810,680 8,857,920 570.99 4,458 28,089 1.88 303.72
decod24 6 81,150 368,064 7.78 1,242 6,075 3.11 2.50
rd32-v0 4 38,716 175,360 4.01 628 2,966 0.36 11.14
rd32-v1 5 58,010 262,960 13.58 910 4,385 1.35 10.06
majority3 3 3,696 14,952 0.08 204 840 0.03 2.67
4mod5-v0 5 334,505 1,583,200 122.74 1,790 9,550 7.96 15.42
4mod5-v1 5 334,505 1,583,200 407.22 1,790 9,550 22.44 18.15
ALU-v0 6 468,147 2,216,320 1,970.77 2,442 13,242 1,269.30 1.55
Average 32.34

solvers. Thus, more optimization problems will benefit
from higher level of abstractions by shorter overall run-
times. In addition exploiting the higher level representation
for problem specific strategies has to be considered in fu-
ture work. As shown for example in [25] this may lead to
further improvements.

References
[1] The Satisfiability Modulo Theories Competition (SMT-

COMP) . www.smtcomp.org, 2007.
[2] A. Armando, J. Mantovani, and L. Platania. Bounded model

checking of software using SMT solvers instead of SAT
solvers. In SPIN, pages 146–162, 2006.

[3] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila,
P. Rossum, S. Schulz, and R. Sebastiani. The MathSAT 3
System. In Int. Conf. on Automated Deduction, 2005.

[4] M. Davis, G. Logeman, and D. Loveland. A machine pro-
gram for theorem proving. Comm. of the ACM, 5:394–397,
1962.

[5] S. Deng, J. Bian, W. Wu, X. Yang, and Y. Zhao. EHSAT: An
efficient rtl satisfiability solver using an extended dpll pro-
cedure. In Design Automation Conf., pages 588–593, 2007.

[6] R. Drechsler. Using word-level information in formal
hardware verification. Automation and Remote Control,
65(4):963–977, 2004.

[7] B. Dutertre and L. Moura. A Fast Linear-Arithmetic Solver
for DPLL(T). In Computer Aided Verification, volume 4114
of LNCS, pages 81–94, 2006.

[8] N. Eén and N. Sörensson. An extensible SAT solver. In SAT
2003, volume 2919 of LNCS, pages 502–518, 2004.

[9] V. Ganesh and D. L. Dill. A decision procedure for bit-
vectors and arrays. In Computer Aided Verification, volume
4590, pages 519–531, 2007.

[10] E. Goldberg and Y. Novikov. BerkMin: a fast and robust
SAT-solver. In Design, Automation and Test in Europe,
pages 142–149, 2002.

[11] D. Große, X. Chen, G. Dueck, and R. Drechsler. Exact SAT-
based Toffoli network synthesis. In Great Lakes Symp. VLSI,
pages 96–101, 2007.

[12] C. Haubelt, J. Teich, R. Feldmann, and B. Monien. SAT-
based techniques in system synthesis. In Design, Automa-
tion and Test in Europe, pages 11168–11169, 2003.

[13] D. E. Knuth. The Stanford GraphBase: a platform for com-
binatorial computing. ACM, New York, NY, USA, 1993.

[14] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. Smt tech-
niques for fast predicate abstraction. In Computer Aided
Verification, volume 4144, pages 424–437. Springer, 2006.

[15] J. Marques-Silva and K. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Trans. on Comp.,
48(5):506–521, 1999.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conf., pages 530–535, 2001.

[17] R. Nieuwenhuis and A. Oliveras. On SAT modulo theories
and optimization problems. In SAT, volume 4121, pages
156–169. Springer, 2006.

[18] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2006.

[19] L. Ryan. Efficient Algorithms for Clause Learning SAT
Solvers. Master’s thesis, Simon Fraser University, Canada,
2004.

[20] A. Sülflow, U. Kühne, R. Wille, D. Große, and R. Drechsler.
Evaluation of SAT like proof techniques for formal verifica-
tion of word level circuits. In IEEE 8th Workshop on RTL
and High Level Testing (WRTLT’07), pages 31–36, 2007.

[21] T. Toffoli. Reversible computing. In Proceedings of the
7th Colloquium on Automata, Languages and Programming,
pages 632–644, London, UK, 1980. Springer-Verlag.

[22] G. Tseitin. On the complexity of derivation in propositional
calculus. In Studies in Constructive Mathematics and Math-
ematical Logic, Part 2, pages 115–125, 1968. (Reprinted in:
J. Siekmann, G. Wrightson (Ed.), Automation of Reasoning,
Vol. 2, Springer, Berlin, 1983, pp. 466-483.).

[23] M. N. Velev. Exploiting hierarchy and structure to efficiently
solve graph coloring as SAT. In Int’l Conf. on CAD, pages
135–142, 2007.

[24] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler.
Sword: A SAT like prover using word level information. In
Int’l Conf. on Very Large Scale Integration, pages 88–93,
2007.

[25] R. Wille and D. Große. Fast Exact Toffoli Network Synthe-
sis of Reversible Logic. In Int’l Conf. on CAD, pages 60–64,
2007.

[26] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drech-
sler. RevLib: an online resource for reversible functions and
reversible circuits. In Int’l Symp. on Multi-Valued Logic,
2008. RebLiv is available at http://www.revlib.org.

[27] Z. Zeng, K. R. Talupuru, and M. J. Ciesielski. Functional
test generation based on word-level SAT. Journal of Systems
Architecture, 51(8):488–511, 2005.


