
Exact SAT-based Toffoli Network Synthesis

Daniel Große
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

grosse@informatik.uni-
bremen.de

Xiaobo Chen
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

shoppo@informatik.uni-
bremen.de

Gerhard W. Dueck
∗

Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada E3B
5A3

gdueck@unb.ca

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

drechsle@informatik.uni-
bremen.de

ABSTRACT
Compact realizations of reversible logic functions are of in-
terest in the design of quantum computers. Such reversible
functions are realized as a cascade of Toffoli gates. In this
paper, we present the first exact synthesis algorithm for re-
versible functions using generalized Toffoli gates. Our it-
erative algorithm formulates the synthesis problem with d
Toffoli gates as a sequence of Boolean Satisfiability (SAT)
instances. Such an instance is satisfiable iff there exists a
network representation with d gates. Thus, we can guaran-
tee minimality. In addition to fully specified reversible func-
tions, the algorithm can be applied to incompletely specified
functions. For a set of benchmarks experimental results are
given.

Categories and Subject Descriptors
B6.3 [Design Aids]: Automatic synthesis

General Terms
Design, Theory

Keywords
Reversible Logic, Quantum Circuits, Synthesis, Minimiza-
tion, Boolean Satisfiability

1. INTRODUCTION
Reversible logic attracted high attention in the area of

low-power design, optical computing and quantum comput-

∗This work was done while Gerhard W. Dueck was visiting
the University of Bremen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

ing. Hence synthesis of reversible logic has become a very
important research topic in the last years. In contrast to
synthesis with traditional irreversible gates there are two
main restrictions for reversible gates: fan-out and feed-back
are not allowed. Consequently a network for reversible logic
consists of a cascade of reversible gates. The most frequently
used gate type is the Toffoli gate [14] which will also be used
in this paper. The idea of this gate is to invert one input
line (the target line) if the product of a set of control lines
evaluates to true.

For the synthesis of reversible logic several approaches
have been proposed. In [13] the authors presented an ap-
proach based on enumeration and using network equiva-
lences to rewrite a limited set of gates. Other synthesis pro-
cedures use heuristics like e.g. spectral techniques [10], pos-
itive polarity Reed-Muller expansions [4], or transformation
based synthesis [11]. In [9] the authors propose a method
that synthesizes the reversible function in a first step and
then based on transformations (using so called templates) a
realization with fewer gates is computed.

An exact synthesis method based on reachability analysis
is described in [5]. However, this procedure is geared towards
quantum gates, not Toffoli gates.

In this paper we present the first exact algorithm for Tof-
foli synthesis of a reversible function1. Our method uses
an iterative algorithm that is based on Boolean Satisfiabil-
ity (SAT). Hence we can compute a minimal solution in the
sense that we can prove that there is no network realization
with fewer gates.

The rest of the paper is structured as follows. Section 2
presents the background on reversible logic and Toffoli gates.
Furthermore SAT is briefly reviewed. In Section 3 the exact
synthesis algorithm is introduced. Experimental results are
provided in Section 4. Finally, the paper is summarized.

2. PRELIMINARIES

2.1 Reversible Logic
A reversible logic gate is a n-input n-output function that

maps each possible input vector to a unique output vector.

1Preliminary results have been presented in [3].

x
x

x
x1

4

3

2

Figure 1: Toffoli gate example

In other words this function is a bijection. Many reversible
gates have been studied. Generalized Toffoli gates [14] are
widely used. In the rest of this paper we only consider Toffoli
gates that are defined as follows:

Definition 1. Let X := {x1, . . . , xn} be the set of do-
main variables. A generalized Toffoli gate has the form
TOF (C, t), where C = {xi1 , . . . , xik} ⊂ X is the set of con-
trol lines and t = {xj} with C ∩ t = ∅ is the target line.
The gate maps (x1, . . . , xn) to (x1, . . . , xj−1, xj ⊕xi1 . . . xik ,
xj+1, . . . , xn).

An example for the Toffoli gate TOF ({x1, x2}, {x4}) is
shown in Figure 1. This gate maps (x1, x2, x3, x4) to
(x1, x2, x3, x4 ⊕ x1x2). The network is drawn in standard
notation (see e.g. [12]).

Due to restrictions in quantum mechanics as network topol-
ogy only a cascade structure can be used. This structure is
simply a number of Toffoli gates in a cascade.

Definition 2. The reversible cost (or simply, cost) of an
implementation of a reversible function f is defined as the
number of gates in the network representation that realizes
f .

The goal of this paper is to provide an algorithm for op-
timal synthesis of a reversible function, i.e. computing the
minimal number of gates for a reversible function. The pro-
posed approach is based on Boolean Satisfiability which is
described in the following.

2.2 SAT
The Boolean Satisfiability problem (SAT) is defined as fol-

lows:

Definition 3. Let h be a Boolean function in Conjunc-
tive Normal Form (CNF), i.e. a product-of-sum representa-
tion. Then the SAT problem is to determine whether there
exists an assignment to the variables of h such that h eval-
uates to true or to prove that no such assignment exists.

SAT is one of the central NP-complete problems. In fact,
it was the first known NP-complete problem which was prov-
en by Cook in 1971 [1]. Today SAT is not only used in
theorem proving, but in many application domains like au-
tomatic test pattern generation, logic synthesis, and verifi-
cation. In the last ten years significant improvements have
been made in the area of SAT solvers. Several powerful tools
have been developed that make use of Boolean constraint
propagation and efficient learning techniques to speed up
the proof process (see e.g. [2]).

Here we briefly review the terms that are used in the con-
text of SAT. A literal is a either a variable or its negation.
A clause is a disjunction of literals and a CNF consists of a
conjunction of clauses.

x

x
02

03

x01

x02

03

x01
1

1

1

x

x
02

03

x01

x

w wx x1
0 0 0

depth

0

0

0

0

2

2

2

x20

0 1

1

Figure 2: Variables in S2 with n = 3, d = 2 and i = 0

Example 1. Let h = (x1 + x2 + x3)(x1 + x3)(x2 + x3).
Then x1 = 1, x2 = 1 and x3 = 1 is a satisfying assign-
ment for h. The values of x1 and x2 ensure that the first
clause becomes 1 while x3 ensures this for the remaining two
clauses.

3. EXACT SYNTHESIS ALGORITHM
In this section we present the exact synthesis algorithm

for reversible logic based on SAT. The basic idea is to check
if there exists a Toffoli gate representation for the function
with d gates, where d is increased in the next iteration if no
realization is found. We first describe a formulation of the
synthesis problem with d gates as a Boolean formula. Then,
we provide the steps for the transformation of the Boolean
formula info a CNF representation. Finally the overall flow
of the exact algorithm is presented in detail.

3.1 Boolean Formulation
For a reversible function the synthesis problem is expressed

as a Boolean function Sd that is satisfiable iff there exists
a Toffoli gate network representation of size d. Before the
details for the function Sd are provided the following defini-
tions are given:

Definition 4. Let f : Bn → Bn be a reversible function.
Then two variable vectors are defined:

1. ~xk
i = (xk

inxk
i(n−1) . . . xk

i1) with 0 ≤ i ≤ 2n − 1 and
0 ≤ k ≤ d is a Boolean vector representing the input,
temporary, or output variables at depth k for line i
of the truth-table of f . The left side of the truth-table
corresponds to the vector ~x0

i , the right side to the vector
~xd

i , respectively.

2. ~wk = (wk
dlog2(g)e . . . wk

1) with 0 ≤ k ≤ d−1 is a Boolean
vector representing the chosen Toffoli gate at depth k.
Here g denotes the number of different Toffoli gates in
n variables.

As an example the variables in the Boolean formulation
Sd are shown for the parameters n = 3, d = 2 and i = 0
in Figure 2. In this example the reversible function has 3
input and 3 output variables, the truth-table has 23 = 8
lines and we are looking for realizations with d = 2 Toffoli
gates. Remember that the figure only shows the variables
for one line of the truth-table (here i = 0). Furthermore
the possible positions for the Toffoli gates are marked with
dashed rectangles.

In the following theorem the number of Toffoli gates in n
variables is determined.

Theorem 1. For a reversible function with n variables
there exist n · 2n−1 different Toffoli gates.

Proof. Since a Toffoli gate has exactly one target line
there are n− 1 lines left as possible control lines. Obviously
each possible combination of control lines can be enumerated
using the power set of {1, . . . , n − 1}. In total there are n
lines for a reversible function with n variables. So we get
n · 2n−1 different Toffoli gates.

Based on the previous definitions and considerations the
Boolean formulation Sd for the synthesis of the reversible
function f : Bn → Bn consists of the conjunction of the
following three formulas2:

1. The input-/output constraints set the input/output pair
of each line of the truth-table given by the reversible
function f :

2n−1^
i=0

~x0
i = i ∧ ~xd

i = f(i)

2. The functional constraints for possible Toffoli gates
that are chosen by an assignment to ~wk are:

d−1̂

k=0

g−1^
j=0

2n−1^
i=0

(~wk = j) → (~xk+1
i = t(~xk

i , j))

These constraints ensure that if at depth k the Toffoli
gate j is selected in line i the variables at depth k + 1
are computed from the variables at depth k with the
Toffoli gate function t(~xk

i , j). The function t(~xk
i , j) is

defined by enumerating all possible Toffoli gates with
n variables.

3. The exclusion constraints ensure that illegal assign-
ments to ~wk are excluded since not all values of ~wk

are necessary to enumerate all possible Toffoli gates:

d−1̂

k=0

~wk < g

Obviously we have found a Boolean formulation for the
synthesis problem of the reversible function f : Bn → Bn

with d generalized Toffoli gates that is satisfiable iff a net-
work realization for f exists with exactly d gates.

3.2 CNF Formulation
For the SAT-based synthesis algorithm we express the

Boolean formulation in terms of a CNF. In the following we
discuss the construction of the three constraints as a CNF
separately:

1. The input/output constraints can be mapped directly
by the use of unit clauses, i.e. the the binary encoding
for the value of each input/output vector is used to
generate the corresponding clauses.

2. It is well known that by the introduction of new vari-
ables the CNF form for any Boolean formula can be
produced in time and space linear in the size of the

2For simplicity, natural numbers are identified with their
corresponding binary encoding.

(1) exactSynthesis(f : Bn → Bn)
(2) /* f is given in form of a truth-table */
(3) found = false;
(4) d = 1;
(5) while (found == false) do
(6) C = constructCNF(f, d);
(7) r = callSATSolver(C);
(8) if (r == satisfiable) then
(9) /* synthesis result with cost d found */

(10) A = getAssignment();
(11) ExtractNetworkFromAssignment(A);
(12) found = true;
(13) else
(14) /* no synthesis result with cost d */
(15) d = d + 1;
(16) end–if
(17) end–while

Figure 3: Overall flow of exact synthesis algorithm

original Boolean formula [6]. For the construction al-
gorithm we first define methods for the simple logic
functions like AND, OR, etc. that generate the corre-
sponding clauses. Then we extended this scheme for
more complex logic like equality of Boolean vectors.
Based on a method that enumerates the different Tof-
foli gates, the functional constraints can be formulated
in CNF.

3. The illegal assignments to ~wk are expressed by ex-
plicitly enumerating all values that are not allowed
in form of a blocking clause. E.g. if n = 3 we have
3 · 23−1 = 3 · 4 = 12 different Toffoli gates. The vec-
tor ~wk has the length dlog2(12)e = 4. However for ~wk

the values 12, 13, 14, 15 are illegal. E.g. for ~w0 we add
the blocking clause (w0

4 + w0
3 + w0

2 + w0
1) to exclude

the value 12 since this clause evaluates to false for the
assignment w0

4 = 1, w0
3 = 1, w0

2 = 0, w0
1 = 0.

3.3 SAT-based Algorithm
Based on the CNF formulation for the synthesis problem

described in the previous section the overall algorithm is
shown in Figure 3. The input for the algorithm is the re-
versible function f as a truth-table. At first the algorithm
starts to find a network representation for f with cost 1,
since d is initialized to 1. Then, in the while-loop for the
current value of d the CNF C is constructed as described
above. This CNF is given to a SAT solver an checked for
satisfiability. If there exists a satisfying assignment for C a
network representing f has been found. This network – a
cascade of Toffoli gates – is extracted from the variables of
~wk and found is set to true to abort the main loop. If the
CNF C is unsatisfiable d is increased which results in a new
search with one more Toffoli gate.

3.4 Incompletely Specified Functions
It is well known that many practical logic functions con-

tain don’t care conditions. That is, the output for certain
input combination is irrelevant. Most traditional minimiza-
tion algorithms take advantage of this condition. In order to
make a function reversible, it is often necessary to add con-
stant inputs and garbage outputs [8]. The garbage outputs
are by definition don’t cares.

Table 1: Embedding f = a ·b in a reversible function.

c a b f g1 g2

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

Table 2: Function f = a · b with don’t cares.
c a b f g1 g2

0 0 0 0 - -
0 0 1 0 - -
0 1 0 0 - -
0 1 1 1 - -
1 0 0 - - -
1 0 1 - - -
1 1 0 - - -
1 1 1 - - -

Example 2. Consider the function f = a · b. To make
it reversible, we have to add a constant input c and two
garbage outputs g1 and g2. A possible assignment is shown
in Table 1. This is the optimal assignment, since it can be
realized with a single Toffoli gate, namely TOF ({a, b}, {c}).
However, not all functions are so easily embedded into a
reversible function. It is advantageous to leave the don’t care
conditions unspecified as shown in Table 2.

Given a non-reversible function with i input variables and
o outputs, that is embedded in a reversible function with c
constant inputs and g garbage outputs, then the number of
unspecified entries in the truth-table is given by the follow-
ing formula:

(2n − 2i) · n + g · 2i

where n = i + c = g + o.
For example, the parameters for a full adder (listed as

rd32 in Table 7 are: i = 3, o = 2, c = 1, and g = 2. The
number of unspecified entries in the truth table are

(24 − 23) · 4 + 2 · 23 = 48.

That is, 48 of the 64 entries in the truth table are don’t cares.
Clearly, the full adder is embedded in many different 4-input
reversible function. Choosing the optimal embedding is non-
trivial.

Most algorithms that have been proposed for reversible
logic synthesis start with a fully specified reversible func-
tion. No solution to the problem of finding an optimal or
near-optimal embedding of a non-reversible function into a
reversible one has been proposed. In our SAT-based proce-
dure the finding of a proper embedding is not necessary —
the don’t care outputs can be left unspecified.

4. EXPERIMENTAL RESULTS
We have implemented the presented synthesis algorithm

in C++. As a SAT solver we use MiniSat v1.14 [2]. All ex-

Table 3: Small example
b a b′ a′

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Table 4: Synthesis results for small example
depth variables clauses time result

1 90 288 0.01 UNSAT
2 172 560 0.01 SAT
3 254 832 0.01 UNSAT
4 336 1,104 0.01 SAT
5 418 1,376 0.01 SAT
6 500 1,648 0.01 SAT

periments have been carried out on an AMD Athlon 3500+
with 1 GB of main memory.

In a first experiment we tested our synthesis algorithm
for a very small example. The truth table of the reversible
function is shown in Table 3. The function maps (b, a) to
(a ⊕ b, b). The result of our iterative SAT-based synthesis
algorithm3 is shown in Table 4. The first column gives the
depth d for which the CNF is constructed and afterwards
the SAT solver is called. The next two columns provide
information on the variables and clauses used in the CNF
formulation. In column time the CPU time for the current
iteration in seconds is reported. Then, in the last column
it is shown whether the CNF is satisfiable or not. As can
be seen for this example several SAT solutions have been
found, i.e. there exists Toffoli networks with 2, 4, 5 and 6
gates. The different solutions are shown in Figure 4. For this
simple example it is remarkable that there exists a network
realization with 2 gates but no realization with 3 gates. This
example already shows that in our SAT-based algorithm it
is necessary to make a full search by incrementing the depth
starting from 1. Starting with a large d and proving that
there is no solution with d gates, we can not conclude that
there is no solution with less than d gates.

In a second experiment we applied our synthesis algorithm
to a number of benchmarks. First, we studied completely
specified functions. The results are shown in Table 5.

The first column provides the name of the reversible func-

3For this example we modified the algorithm to compute
solutions up to depth 6.

Figure 4: Different network realizations for small
example

Table 5: Results for complete specified functions
name d vars clauses time res
ham3 1 628 2,524 0.01 U

2 1,232 5,000 0.02 U
3 1,836 7,476 0.06 U
4 2,440 9,952 0.19 U
5 3,044 12,428 0.32 S

3 17 1 628 2,524 0.01 U
2 1,232 5,000 0.02 U
3 1,836 7,476 0.07 U
4 2,440 9,952 0.12 U
5 3,044 12,428 0.28 U
6 3,648 14,904 0.46 S

hwb4 1 3,910 17,632 0.03 U
2 7,756 35,136 0.12 U
3 11,602 52,640 0.28 U
4 15,448 70,144 1.44 U
5 19,294 87,648 2.74 U
6 23,140 105,152 7.66 U
7 26,986 122,656 94.13 U
8 30,832 140,160 261.38 U
9 34,678 157,664 2108.82 U

10 38,524 175,168 22737.50 U
11 42,370 192,672 21897.30 S

mod5d1 1 22,407 105,808 0.22 U
2 44,654 211,296 1.93 U
3 66,901 316,784 16.60 U
4 89,148 422,272 36.43 U
5 111,395 527,760 190.79 U
6 133,642 633,248 1600.46 U
7 155,889 738,736 215.16 S

graycode6 1 120,968 591,040 2.80 U
2 241,552 1,181,312 37.10 U
3 362,136 1,771,584 114.54 U
4 482,720 2,361,856 107.55 U
5 603,304 2,952,128 309.00 S

tion. In column d the current depth is given. Again, in
the following columns the information on the SAT instance,
i.e. number of clauses and variables, are shown. The needed
run time for each iteration in CPU seconds is reported in col-
umn time. Finally, in the last column it is shown whether
the SAT instance is satisfiable or not. We provide a short de-
scription for each benchmark presented in the table. ham3
is a hamming optimal coding function. The specification
of 3 17 can be found on [7]. hwb4 is the hidden weighted
bit function of size 4. The mod5d1 function realizes the
Grover’s oracle and graycode6 computes the gray code. As
can be seen for many of the benchmarks Toffoli networks of
minimal size can be found fast. Since reversible functions
have different levels of complexity and due to the heuristic
nature of SAT solvers the run times for the benchmarks dif-
fer. From the perspective of SAT we can see that we have
some hard SAT instances. E.g. for the satisfiable solution of
the instance of hwb4 with depth 11 the run time of the SAT
solver was very high. In contrast the result for graycode6
was computed very fast.

The results for incompletely specified functions are shown
in Table 6. Several options for embedding these functions

Table 6: Results for incomplete specified functions
name d vars clauses time res
decod24-v0 1 3,910 17,584 0.08 U

2 7,756 35,088 0.22 U
3 11,602 52,592 0.51 U
4 15,448 70,096 1.28 U
5 19,294 87,600 3.40 U
6 23,140 105,104 2.29 S

decod24-v1 1 3,910 17,584 0.03 U
2 7,756 35,088 0.11 U
3 11,602 52,592 0.24 U
4 15,448 70,096 0.74 U
5 19,294 87,600 2.04 U
6 23,140 105,104 3.06 S

decod24-v2 1 3,910 17,584 0.04 U
2 7,756 35,088 0.11 U
3 11,602 52,592 0.26 U
4 15,448 70,096 0.66 U
5 19,294 87,600 2.18 U
6 23,140 105,104 4.05 S

decod24-v3 1 3,910 17,584 0.03 U
2 7,756 35,088 0.10 U
3 11,602 52,592 0.32 U
4 15,448 70,096 0.46 U
5 19,294 87,600 1.91 U
6 23,140 105,104 17.38 U
7 26,986 122,608 8.58 S

rd32a 1 3,910 17,584 0.08 U
2 7,756 35,088 0.22 U
3 11,602 52,592 0.91 U
4 15,448 70,096 2.80 S

rd32b 1 3,910 17,584 0.03 U
2 7,756 35,088 0.11 U
3 11,602 52,592 0.40 U
4 15,448 70,096 1.39 U
5 19,294 87,600 11.56 S

majority3 1 628 2,508 0.01 U
2 1,232 4,984 0.02 U
3 1,836 7,460 0.05 S

4mod5a 1 22,407 105,664 0.45 U
2 44,654 211,152 3.04 U
3 66,901 316,640 18.73 U
4 89,148 422,128 87.52 U
5 111,395 527,616 13.00 S

4mod5b 1 22,407 105,664 0.24 U
2 44,654 211,152 2.06 U
3 66,901 316,640 21.99 U
4 89,148 422,128 105.11 U
5 111,395 527,616 277.82 S

ALUc 1 22,407 105,680 0.51 U
2 44,654 211,168 2.68 U
3 66,901 316,656 12.05 U
4 89,148 422,144 120.60 U
5 111,395 527,632 990.10 U
6 133,642 633,120 844.83 S

into reversible ones are available. First, one can chose how
to set the constant inputs. Second, there may be a choice

Table 7: Cost comparison of synthesis results
function in c out g old src. SAT
rd32 3 1 2 2 4 [9] 4
ham3 3 0 3 0 5 [9] 5
3 17 3 0 3 0 6 [9] 6
hwb4 4 0 4 0 11 [7] 11
mod5d1 4 1 5 0 8 [7] 7
4mod5 4 1 1 4 5 [7] 5
decode42 2 2 4 0 11 [4] 6
graycode6 6 0 6 0 5 [4] 5
alu 5 0 1 4 18 [4] 6

Figure 5: Realization of alu from [4]

Figure 6: SAT optimized alu realization

in where to place the garbage outputs. For example, for the
function decod24 [4] we can chose the values for the con-
stant inputs from {00, 01, 10, 11}. The results are shown as
decod24-v0 to decod24-v3 in Table 6. It is apparent, that all
four functions exhibit very similar properties, but for one
the minimal Toffoli realization requires one more gate. It
is therefore important to consider all possible assignments
for the constant inputs. For the full adder rd32 we show
the two experiments where the constant was set to zero and
one, respectively. As explained it was not necessary to spec-
ify values for the garbage outputs since these are handled as
don’t cares. Due to page limitation we only show the exper-
iment for the best result obtained for alu (specification see
[4]).

For all benchmark results we give a comparison to the
results reported in literature (see e.g. [9]). The comparison
is shown in Table 7. The first column provides the name of
the function. Columns labeled in and out give the number
of inputs and outputs, respectively. Columns labeled c and g
specify the number or constant inputs and garbage outputs
(if the given function is reversible, then there are no garbage
outputs). Column old gives the number of Toffoli gates in
the previously best known result; the source is given in the
next column. Finally, we show the size of our SAT-based
result in the last column.

We can prove that for some benchmarks minimal Toffoli
gate networks have previously been found. For three func-
tions we found a better solution than previously known; two
of them are significantly better. The function mod5d1 (taken
from [7]) does not have garbage outputs and the four inputs

are also available as outputs. For this function the size of
the network was reduced by one compared to the best known
realization. For the benchmark functions decode42 and alu
we achieved a reduction of 45% and 67%, respectively. This
is due to two factors. First, we are able to find the minimal
result. Second, there is no need to embed the non-reversible
function in a reversible one. The second point seems to offer
significant advantages. The two networks for alu are shown
in Figure 5 and 6 (g denotes the garbage output).

5. CONCLUSIONS
In this paper we presented an exact synthesis algorithm

using generalized Toffoli gates for reversible logic functions.
Our algorithm uses SAT techniques to find a network real-
ization for the reversible function. We have demonstrated
our synthesis algorithm on a set of benchmarks. On the one
hand we were able to prove that synthesis results reported
in literature are minimal in the number of Toffoli gates. On
the other hand we showed that there exist network realiza-
tions with fewer gates for some functions. The algorithm
takes full advantage of don’t care conditions.

6. REFERENCES
[1] S. Cook. The complexity of theorem proving procedures. In

3. ACM Symposium on Theory of Computing, pages
151–158, 1971.

[2] N. Eén and N. Sörensson. An extensible SAT solver. In
SAT 2003, volume 2919 of LNCS, pages 502–518, 2004.

[3] D. Große, X. Chen, and R. Drechsler. Exact toffoli network
synthesis of reversible logic using boolean satisfiability. In
IEEE Dallas/CAS Workshop, pages 51–54, 2006.

[4] P. Gupta, A. Agrawal, and N. Jha. An algorithm for
synthesis of reversible logic circuits. IEEE Trans. on CAD
of Integrated Circuits and Systems, 25(11):2317–2330,
2006.

[5] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski.
Optimal synthesis of multiple output Boolean functions
using a set of quantum gates by symbolic reachability
analysis. IEEE Trans. on CAD of Integrated Circuits and
Systems, 25(9):1652–1663, 2006.

[6] T. Larrabee. Test pattern generation using Boolean
satisfiability. IEEE Trans. on CAD, 11:4–15, 1992.

[7] D. Maslov. Reversible Logic Synthesis Benchmarks Page.
http://www.cs.uvic.ca/˜dmaslov/.

[8] D. Maslov and G. W. Dueck. Reversible cascades with
minimal garbage. IEEE Trans. on CAD of Integrated
Circuits and Systems, 23(11):1497–1509, 2003.

[9] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network
synthesis with templates. IEEE Trans. on CAD of
Integrated Circuits and Systems, 24(6):807–817, 2005.

[10] D. M. Miller and G. W. Dueck. Spectral techniques for
reversible logic synthesis. In 6th International Symposium
on Representations and Methodology of Future Computing
Technology, pages 56–62, 2003.

[11] D. M. Miller, D. Maslov, and G. W. Dueck. A
transformation based algorithm for reversible logic
synthesis. In Design Automation Conf., pages 318–323,
2003.

[12] M. A. Nielsen and I. Chuang. Quantum computation and
quantum information. Cambridge University Press, 2000.

[13] V. Shende, A. Prasad, I. Markov, and J. Hayes. Reversible
logic circuit synthesis. In Int’l Conf. on CAD, pages pp.
353–360, 2002.

[14] T. Toffoli. Reversible computing. In W. de Bakker and
J. van Leeuwen, editors, Automata, Languages and
Programming, page 632. Springer, 1980. Technical Memo
MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

