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Motivation

Motivation

Learned methods in imaging boost reconstruction quality

Often only limited amount of paired data available

Contributions

1 Compare different classical and deep learning approaches for CT reconstruction in
low-dose scenarios

2 Investigate the influence of the number of training and validation samples on the
performance of learned models

3 Explore ways to use the Deep Image Prior (DIP) for CT reconstruction
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Low-Dose CT

Reduction Strategies

1.5% of all cancers in the U.S. might relate to current CT usage [4]

Low-dose CT can lead to challenges for the reconstruction models

We include two common reduction strategies in our study:

1 Sparse angle: undersampled
→ Synthetic Ellipses Dataset

2 Low photon count: Poisson noise
→ LoDoPaB-CT Dataset [8]

Both datasets are easily accessible through our python library DIVα`1

1pypi.org/project/dival
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Low-Dose CT

Synthetic Ellipses Dataset

Random ellipse phantoms

Around 40 000 images in total

Sparse angle setup

Undersampled & Gaussian noise
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Low-Dose CT

LoDoPaB-CT Dataset

Thoracic CT scans from the LIDC/IDRI
database [3]

Over 800 patients and 40 000 scan slices

Low photon count setting

Poisson noise
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Deep Image Prior for CT

Definition DIP [7]

For fixed input z and neural network ϕ with parameters θ solve

θ̂ = argmin
θ∈Θ

‖Aϕ(θ, z)− y δ‖2, x̂ = ϕ(θ̂, z)

No ground truth and training data needed

Optimize using gradient descent with early stopping

Regularization is a combination of early stopping and the architecture
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Deep Image Prior for CT

Our Approaches for CT

1 Deep Image Prior + Regularization
Add an additional regularization term R with weighting factor α ∈ R+

θ̂ = argmin
θ∈Θ

‖Aϕ(θ, z)− yδ‖2 + αR (ϕ(θ, z))

Choose Total Variation (TV) R(·) = ‖∇ · ‖1 for sparse gradients [9]

2 Start with an initial reconstruction
Choose z as output of another reconstruction algorithm
Can lead to better reconstructions and fewer optimization steps
DIP can adapt the initial algorithm to a new setting without retraining
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Results

Compared Methods

Methods without training

Filtered Backprojection (FBP)

Total Variation (TV)

Deep Image Prior (DIP) + TV

Fully-learned inversion

iRadonMap [5]

Learned iterative schemes

Learned Gradient Descent (LearnedGD) [2]

Learned Primal-Dual (LearnedPD) [1]

Post-processing

FBP + U-Net [6]

LearnedPD + DIP
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Results

Ellipses Dataset
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Results

LoDoPaB-CT Dataset
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Additional Information

Thanks for your Attention!

Follow the link below or scan the QR code for
additional information

dival.math.uni-bremen.de/isbi2020_ct_dip_dl
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