S8 UNIVERSITY OF
4P CAMBRIDGE

iUNets - Fully invertible U-Nets for Memory-Constrained
Applications

Christian Etmann, joint work with Rihuan Ke & Carola-Bibiane Schénlieb
30th June 2020

output
image |w{#» | segmentation
map

= conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
= conv 1x1

Figure 1: The 'classic’ U-Net (Ronneberger et al.)

e U-Nets standard design principle for image-to-image tasks (segmentation, inverse
problems in imaging etc., same for 3D.)

e High dimensionalities: prohibitive memory requirements
e This work: drop-in replacement for U-Nets (2D & 3D) with far lower memory footprint

Papers from Google Docs file which use U-Net-like architectures (5 out of 13):

e Multi-Scale Learned Iterative Reconstruction (Hauptmann et al., 2019)

o NoiseZInverse: Self-supervised deep convolutional denoising for linear inverse
problems in imaging (Hendriksen et al., 2020)

e NETT: Solving Inverse Problems with Deep Neural Networks (Li et al., 2020)

e Learning the invisible: a hybrid deep learning-shearlet framework for limited angle

computed tomography (Bubba et al., 2019)
e Deep Bayesian Inversion (Adler & Oktem, 2018)

Invertible networks for memory-restricted applications

Why do we need to store activations?
Let x; = ®;(x;_1) be the output of a neural network’s layer with nonlinear mapping
®; : R — RY, where 6; are the layer's parameters. Let further £ = {(x;) be the loss of

the network. Then
(A" ~(ddi(xi-1)\"
VQ,.E = <CW,> -V L = (de,) -V L

provides the weight-gradient necessary for the training of the network.
For the calculation, we need

e the gradient of of the loss with respect to the output node, i.e. V,.£ and

e the input node x;_1 for the calculation of the derivative %.

Invertible networks for memory-restricted applications

e Solution: if ®; is bijective and we have x; in memory, we can simply reconstruct
=l
xi—1 = ;" (xi)

from the next layer’s activation x;

e If the whole network is invertible, we can employ a memory-efficient
backpropagation

e Successively reconstruct activations and calculate gradients from the last back to
the first layer

e Memory requirement independent of the network's depth!

e How to construct these layers?

e Restriction: dimensionality may not change throughout network. For many
applications: invertibility only up to last layer.

Invertible networks via additive coupling layers

~

e Additive coupling layers divide activation by channels: x; = (uj, v;)

e Forward mapping ®; : (uj_1,vi—1) — (uj, v;) defined by

uj = vji-1 (1)
Vi = Ui—1+ fa,(vi-1)
for (almost) arbitrary fy,, e.g. several conv layers
e Inverse can be computed algebraically via
ui—1 = v; — fo,(uj)
(2)

Vi—1 = Uj

e Other concepts employ numerical inversion schemes (/nvertible Residual Networks,
Behrmann et al., 2019)

Invertible U-Nets with Learnable

Up- and Downsampling

Invertible Up- and Downsampling

Normally, downsampling inherently non-invertible, because the dimensionality is

decreased

Classical methods: bi-/trilinear or bi-/tricubic interpolation, nearest neighbors,

max pooling...

e ...unless we increase (decrease) the number of channels at the same time as
decreasing (increasing) the spatial dimensionality, e.g. invertible function

RCXHXW N]R4CXH/2X w2

invertible upsampling is inverse to invertible downsampling

Existing Invertible Up- and Downsampling

Figure 2: Straightforward methods for invertibly downsampling: pixel shuffle and 2D Haar
transform.

We could try to build an invertible U-Net with these. There is a problem though...

Problems of these methods

inverse
pixel shuffle

=
[

e Inverse pixel shuffle will lead to checkerboard artefacts
When applying conv layers with the standard 3-by-3 kernel, we will get Moiré

patterns
Either we get artefacts or very non-diverse input features (probably both)
Haar transform might work better, but it would be best if we could learn a

suitable invertible upsampling operation

Learnable Invertible Up- and Downsampling

exp(— 07)
@12 a13 G14 <[]~.>]R“
azs az - i
az) a3z a3z azq e o BE=
W2 asz au) —
Ir |
13 a14

[

a3y as2
as3 asa

Figure 3: Idea: create orthogonal convolutional operator, which realizes invertible
downsampling. Its inverse (=invertible upsampling) is given by the corresponding transposed

convolution.
10

Figure 4: Original image, randomly initialized learnable invertible downsampling, invertible

downsampling optimised for sparsity (1-norm minimisation)

11

Mathematical background

e The matrix exponential map
exp : 50(o, R) — SO(o, R) (3)

from Lie algebra so(o, R) of skew-symmetric matrices (MT = —M) to Lie group SO(o, R)
is surjective.

e We can thus represent any special orthogonal matrix via exp(6 — 67 for some square
matrix 6

e e.g. Haar transform:

0 0 -1 -1

921 0 0 1 1
410 0 0 O

0 0 0 O

e Alternatives: Householder transforms, Givens rotations, Cayley transforms

12

Invertible U-Net

32 %256 x 256
LB 2D

3% 256 % 256 64 % 256 x 256 64 x 256 x 256 10 x 256 256

64128 x 128
22,

LD
>
* invertible layers

128 % 128 % 128 1286464 128128128 | B> split channels
> concatenate channels
> copy

leamable invertible
downsampling
- ' learnable invertible

upsampiing

256 %64 x 64 256 % 64 x 64

S12x32x32 S12x92x32 E:> non-invertible layer

fully invertible U-Net

Figure 5: Segmentation example (RGB data to 10 classes). We increase and later decrease
the number of channels, but can use the memory-efficient backpropagation inbetween.

13

Invertible U-Net

iUNets: Fully invertible U-Nets with Learnable Up-
and Downsampling

Rihuan Ke Carola-Biblane Schinlich
r DAMT
o University of Cambridge University of Cambridge University of Cambridze
Q cotnannGdantp.can.ac.uk rk621@can. ac.u cbs31acan. ac.uk
Q
= Abstract
P tablished as a standard neural network design architecture for
- ing and inverse problems in
- ensional applications, as they for example appear in 3D
however have prohibitive memory requirements. Here,
— ible U-Net-based architceture called the fUNet, which
O] of highly procedures,
s For this, we introduce learnable and invertible up- an downsampling operations.
i An open source lbrary in Pytorch for 1D, 2D and 3D data is made availabl

e Preprint released
e Implemented in Pytorch: www.github.com/cetmann/iunets
e Don't do it in Tensorflow...

14

www.github.com/cetmann/iunets

Memory Consumption & Runtimes

Table 1: Memory-efficient (ME) vs conventional backpropagation, 64 x 512 x 512-images. 4
downsampling operations, each ®t and ®F parametrized by § coupling layers.

Peak memory consumption Runtime

ME Conventional Ratio ME Conventional Ratio
=5 0.85GB 3.17 GB 26.8 % 194 s 1.16 s 167 %
0=10 1.09 GB 5.90 GB 18.4 % 410 s 245 s 167 %
0=20 157 GB 11.36 GB 13.8 % 6.82 s 3.67 s 186 %
0=30 2.06GB 16.82 GB 122 % 10.63 s 513s 207 %

15

Experiment 1: Learned Post-Processing from CT Reconstructions

-Ground Truth

e Artificial data: foam phantoms, undersampled parallel beam CT with
slanted+perturbed axis (simulated at 5123), Poisson noise

e learned post-processing with (invertible) U-Net at 256° from filtered
backprojection 1o

Experiment 1: Learned Post-Processing from CT Reconstructions

Table 2: Results of learned post-processing experiments. Here, 'scales’ indicates the number
of different resolutions, whereas 'channel blowup’ denotes the number of feature maps before
reverting to one feature map again.

scales ETanneI 3D U-Net 3D iUNet
OWUpP SSIM PSNR SSIM PSNR
4 4 0.302 13.29 0.568 14.00
4 8 0.416 13.89 0.780 14.99
8 4 0.236 12.42 0.768 15.10
8 8 0.425 13.92 0.829 15.82
8 16 - - 0.854 16.11

17

Experiment 1: Learned Post-Processing from CT Reconstructions

3D U-Net

18

Experiment 2: BraTS 2018

Table 3: Results on BraTS2018 validation set (acting as the test set)

Dice score Sensitivity
ET WT TC avg ET WT TC avg
U-Net 0.770 0.901 0.828 0.833 0.776 0.914 0.813 0.834
iUNet-16 0.767 0.900 0.809 0.825 0.779 0.916 0.798 0.831
iUNet-32 0.782 0.899 0.825 0.835 0.773 0.908 0.824 0.835
iUNet-64 0.801 0.898 0.850 0.850 0.796 0.918 0.829 0.848

e Brain Tumour Segmentation Challenge, MRI data
e 160 x 192 x 128 crop, 4 channels

19

Experiment 3: Normalising Flows

Let the random variable z have probability density function g, for which we will write

z ~ g(z). For any diffeomorphism f, it holds that
df1(z)|

z

x:=f"Yz) ~ q(z) - |det

due to the change-of-variables theorem.
= Probability density of x (denoted p), the log-likelihood of x can be expressed as

df(x)

det dx

log p(x) = log q(f(x)) + log (4)

20

Experiment 3: Normalising Flows

Let f be parametrised by an invertible neural network. Given training data (x,,),’)’zl, the

) . (5)

is a maximum likelihood estimator of the training data under the neural network.

minimiser of

df(x)
dx

det

1 N
min — <Z —log q(f(xn)) + log

n=1 X=Xp

21

Experiment 3: Normalising Flows

Figure 6: Left: real images. Right: generated images.

Results on CIFAR-10:

e Test NLL: 3.60 bits/dim
e RealNVP comparison: 3.49 bits/dim

22

Thank you!

23

	Invertible U-Nets with Learnable Up- and Downsampling

