
iUNets - Fully invertible U-Nets for Memory-Constrained

Applications

Christian Etmann, joint work with Rihuan Ke & Carola-Bibiane Schönlieb

30th June 2020

1



U-Nets

Figure 1: The ’classic’ U-Net (Ronneberger et al.)

• U-Nets standard design principle for image-to-image tasks (segmentation, inverse

problems in imaging etc., same for 3D.)

• High dimensionalities: prohibitive memory requirements

• This work: drop-in replacement for U-Nets (2D & 3D) with far lower memory footprint 2



U-Nets

Papers from Google Docs file which use U-Net-like architectures (5 out of 13):

• Multi-Scale Learned Iterative Reconstruction (Hauptmann et al., 2019)

• Noise2Inverse: Self-supervised deep convolutional denoising for linear inverse

problems in imaging (Hendriksen et al., 2020)

• NETT: Solving Inverse Problems with Deep Neural Networks (Li et al., 2020)

• Learning the invisible: a hybrid deep learning-shearlet framework for limited angle

computed tomography (Bubba et al., 2019)

• Deep Bayesian Inversion (Adler & Öktem, 2018)

3



Invertible networks for memory-restricted applications

Why do we need to store activations?

Let xi = Φi (xi−1) be the output of a neural network’s layer with nonlinear mapping

Φi : Rd → Rd , where θi are the layer’s parameters. Let further L = `(xi ) be the loss of

the network. Then

∇θiL =

(
dxi
dθi

)∗
· ∇xiL =

(
dΦi (xi−1)

dθi

)∗
· ∇xiL

provides the weight-gradient necessary for the training of the network.

For the calculation, we need

• the gradient of of the loss with respect to the output node, i.e. ∇xiL and

• the input node xi−1 for the calculation of the derivative
dΦi (xi−1)

dθi
.

4



Invertible networks for memory-restricted applications

• Solution: if Φi is bijective and we have xi in memory, we can simply reconstruct

xi−1 = Φ−1
i (xi )

from the next layer’s activation xi

• If the whole network is invertible, we can employ a memory-efficient

backpropagation

• Successively reconstruct activations and calculate gradients from the last back to

the first layer

• Memory requirement independent of the network’s depth!

• How to construct these layers?

• Restriction: dimensionality may not change throughout network. For many

applications: invertibility only up to last layer.

5



Invertible networks via additive coupling layers

• Additive coupling layers divide activation by channels: xi ∼= (ui , vi )

• Forward mapping Φi : (ui−1, vi−1) 7→ (ui , vi ) defined by

ui = vi−1

vi = ui−1 + fθi (vi−1)
(1)

for (almost) arbitrary fθi , e.g. several conv layers

• Inverse can be computed algebraically via

ui−1 = vi − fθi (ui )

vi−1 = ui
(2)

• Other concepts employ numerical inversion schemes (Invertible Residual Networks,

Behrmann et al., 2019)

6



Invertible U-Nets with Learnable

Up- and Downsampling



Invertible Up- and Downsampling

• Normally, downsampling inherently non-invertible, because the dimensionality is

decreased

• Classical methods: bi-/trilinear or bi-/tricubic interpolation, nearest neighbors,

max pooling...

• ...unless we increase (decrease) the number of channels at the same time as

decreasing (increasing) the spatial dimensionality, e.g. invertible function

RC×H×W → R4C×H/2×W /2

• invertible upsampling is inverse to invertible downsampling

7



Existing Invertible Up- and Downsampling

Figure 2: Straightforward methods for invertibly downsampling: pixel shuffle and 2D Haar

transform.

We could try to build an invertible U-Net with these. There is a problem though...

8



Problems of these methods

inverse 
pixel shuffle

• Inverse pixel shuffle will lead to checkerboard artefacts

• When applying conv layers with the standard 3-by-3 kernel, we will get Moiré

patterns

• Either we get artefacts or very non-diverse input features (probably both)

• Haar transform might work better, but it would be best if we could learn a

suitable invertible upsampling operation

9



Learnable Invertible Up- and Downsampling

Figure 3: Idea: create orthogonal convolutional operator, which realizes invertible

downsampling. Its inverse (=invertible upsampling) is given by the corresponding transposed

convolution.
10



Examples

Figure 4: Original image, randomly initialized learnable invertible downsampling, invertible

downsampling optimised for sparsity (1-norm minimisation)

11



Mathematical background

• The matrix exponential map

exp : so(σ,R)→ SO(σ,R) (3)

from Lie algebra so(σ,R) of skew-symmetric matrices (MT = −M) to Lie group SO(σ,R)

is surjective.

• We can thus represent any special orthogonal matrix via exp(θ − θT ) for some square

matrix θ

• e.g. Haar transform:

θ =
π

4


0 0 −1 −1

0 0 1 1

0 0 0 0

0 0 0 0


• Alternatives: Householder transforms, Givens rotations, Cayley transforms

12



Invertible U-Net

Figure 5: Segmentation example (RGB data to 10 classes). We increase and later decrease

the number of channels, but can use the memory-efficient backpropagation inbetween.

13



Invertible U-Net

• Preprint released

• Implemented in Pytorch: www.github.com/cetmann/iunets

• Don’t do it in Tensorflow...

14

www.github.com/cetmann/iunets


Memory Consumption & Runtimes

Table 1: Memory-efficient (ME) vs conventional backpropagation, 64× 512× 512-images. 4

downsampling operations, each ΦL
i and ΦR

i parametrized by δ coupling layers.

Peak memory consumption Runtime

ME Conventional Ratio ME Conventional Ratio

δ = 5 0.85 GB 3.17 GB 26.8 % 1.94 s 1.16 s 167 %

δ = 10 1.09 GB 5.90 GB 18.4 % 4.10 s 2.45 s 167 %

δ = 20 1.57 GB 11.36 GB 13.8 % 6.82 s 3.67 s 186 %

δ = 30 2.06 GB 16.82 GB 12.2 % 10.63 s 5.13 s 207 %

15



Experiment 1: Learned Post-Processing from CT Reconstructions

• Artificial data: foam phantoms, undersampled parallel beam CT with

slanted+perturbed axis (simulated at 5123), Poisson noise

• learned post-processing with (invertible) U-Net at 2563 from filtered

backprojection 16



Experiment 1: Learned Post-Processing from CT Reconstructions

Table 2: Results of learned post-processing experiments. Here, ’scales’ indicates the number

of different resolutions, whereas ’channel blowup’ denotes the number of feature maps before

reverting to one feature map again.

scales
channel
blowup

3D U-Net 3D iUNet

SSIM PSNR SSIM PSNR

4 4 0.302 13.29 0.568 14.00

4 8 0.416 13.89 0.780 14.99

8 4 0.236 12.42 0.768 15.10

8 8 0.425 13.92 0.829 15.82

8 16 - - 0.854 16.11

17



Experiment 1: Learned Post-Processing from CT Reconstructions

18



Experiment 2: BraTS 2018

Table 3: Results on BraTS2018 validation set (acting as the test set)

Dice score Sensitivity

ET WT TC avg ET WT TC avg

U-Net 0.770 0.901 0.828 0.833 0.776 0.914 0.813 0.834

iUNet-16 0.767 0.900 0.809 0.825 0.779 0.916 0.798 0.831

iUNet-32 0.782 0.899 0.825 0.835 0.773 0.908 0.824 0.835

iUNet-64 0.801 0.898 0.850 0.850 0.796 0.918 0.829 0.848

• Brain Tumour Segmentation Challenge, MRI data

• 160× 192× 128 crop, 4 channels

19



Experiment 3: Normalising Flows

Let the random variable z have probability density function q, for which we will write

z ∼ q(z). For any diffeomorphism f , it holds that

x := f −1(z) ∼ q(z) ·
∣∣∣∣det

df −1(z)

dz

∣∣∣∣−1

due to the change-of-variables theorem.

⇒ Probability density of x (denoted p), the log-likelihood of x can be expressed as

log p(x) = log q(f (x)) + log

∣∣∣∣det
df (x)

dx

∣∣∣∣ . (4)

20



Experiment 3: Normalising Flows

Let f be parametrised by an invertible neural network. Given training data (xn)Nn=1, the

minimiser of

min
θ∈Θ
− 1

N

(
N∑

n=1

− log q(f (xn)) + log

∣∣∣∣∣det
df (x)

dx

∣∣∣∣
x=xn

∣∣∣∣∣
)
. (5)

is a maximum likelihood estimator of the training data under the neural network.

21



Experiment 3: Normalising Flows

Figure 6: Left: real images. Right: generated images.

Results on CIFAR-10:

• Test NLL: 3.60 bits/dim

• RealNVP comparison: 3.49 bits/dim

22



Thank you!

23


	Invertible U-Nets with Learnable Up- and Downsampling

