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Computed Tomography and Radon Transform

detector
rotate

rotate

X-ray
source

Mathematically, a CT scanner samples the
Radon transform

R(u)(ω, s) =

∫ ∞
−∞

u(sω⊥ + tω) dt

where s ∈ R and ω, ω⊥ ∈ S1.

The normal operator R∗R is an elliptic ΨDO of order −1 and a convolutional
operator associated with the Calderón-Zygmund kernel:

K(x, y) =
1

|x− y| for x 6= y.
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Limited Angle Tomography

Sample Ru(·, s) on [−Γ,Γ] ⊂ [−π/2, π/2), denoted by RΓu = Ru|[−Γ,Γ]×R.

Γ = 90◦, filtered backprojection (FBP)Γ = 75◦, filtered backprojection (FBP)Γ = 60◦, filtered backprojection (FBP)Γ = 45◦, filtered backprojection (FBP)Γ = 30◦, filtered backprojection (FBP)

Observations:

RΓ is a convolutional operator
associated with the kernel:

K(x, y) =
1

|x− y| χΓ(x− y)

for x 6= y and χΓ indicator function of
the visible wedge [−Γ,Γ].

R∗ΓRΓ belongs to the wider class of
FIOs, which includes operators
associated with a kernel showing
discontinuities along lines.

highly ill-posed inverse problem!
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Limited Angle CT in Dental Imaging

Image credits: Samuli Siltanen, VT device.
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Limited Angle CT in Breast Imaging

Image credits:

Giotto Tomo.
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Limited Angle CT in Luggage Control

Image credits:

Analogic COBRA Checkpoint CT.
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Inverse Problem and Sparsity

Linear inverse problem:

given m = RΓu
† + ε ∈ Y , find u† ∈ X

with ‖ε‖Y ≤ δ (noise), X = L2(Ω), Ω ⊂ R2, and Y = L2([−Γ,Γ]× [−S, S]).

The resulting ill-posed inverse problem is usually solved using analytic methods,
iterative reconstruction, or sparse regularization. For example:

argmin
w∈`1(N)

{
‖RΓW

∗w −m‖2Y + λ‖w‖`1
}

with w = Wu

where W : X → `2(N) is the operator associating to any u ∈ X the sequence
of its wavelets coefficients (Wu)I = (u, ψI)X , with respect to a wavelet (or-
thonormal) basis {ψI}I∈N.
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Wavelets in 2D

W

Each wavelet ψI is identified by its scale j, its location
k ∈ N2

0 and its type (t) ∈ {(v), (h), (d), (f)}:

ψI(x) = ψ
(t)
j,k(x) = 2jψ(t)(2jx− k).

We have:

If p = 22J and J0 < J denotes the coarsest scale,
then j ∈ {J0, . . . , J1 = J − 1}.
For j 6= J0, we have wavelets of the types (v), (h)
and (d), whereas for j = J0 we also have type (f).

For each level j and type (t), we consider offsets
k = (k1, k2), k1 = 0, . . . , 2j − 1, k2 = 0, . . . , 2j − 1.
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Iterative Soft-Thresholding Algorithm

Select w(0) ∈ `1(N) and update:

w(n) = Sλ/L
(
w(n−1) − 1

L
WR∗ΓRΓW

∗w(n−1) +
1

L
WR∗Γm

)
,

where Sλ/L(w) is the (component-wise) soft-thresholding operator:

[Sλ/L(w)]I = Sλ/L(wI); Sλ/L(wI) =


wI +

λ

L
if wI < − λ

L

0 if |wI | ≤
λ

L

wI −
λ

L
if wI >

λ

L

with L > 0 step size and λ > 0 regularization parameter.

Once fixed a maximum number of iterations N , the map m→W ∗w(N) ∈ X is
a tentative approximation of the solution map of the inverse problem.
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ISTA and Neural Networks

The (unrolled) iterations of ISTA can be considered as layers of a neural network:

w(n) = Sλ/L
(
w(n−1) − 1

L
K(n)w(n−1) +

1

L
b(n)

)
,

where K(n) = WR∗ΓRΓW
∗ and b(n) = WR∗Γm, independently of n, or:

Main parameters (weight coefficients): θ = (K(1), . . . ,K(N)) ∈ Θ;

Fix the bias vector: b(n) = WR∗Γm;

Other parameters λ, L (which can also be learned), N (hyperparameter).

For a parameter θ, define the map fθ : Y → `1(N) associating m to W ∗w(n).
If θ = θ0 = (WR∗ΓRΓW

∗, . . . ,WR∗ΓRΓW
∗), fθ0 is equivalent to N ISTA iters.

Examples in the literature:

Learned ISTA – LISTA (Gregor & Le Cun, 2010): residual neural network

ISTA-Net (Zhang & Ghanem, 2018): residual neural network

FBPconvNET (Jin, McCann, Froustey & Unser, 2017): U-net, not unrolled
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ISTA as Convolutional Neural Network

Let K ∈ Rp×p represent R∗ΓRΓ in the wavelet basis. Each block K
(t)→(t′)
j→j′ of K

identifies a subband of the wavelet decomposition.

Three key operations to describe the application of each block K
(t)→(t′)
j→j′ to the

vector w
(t)
j of wavelet components:

Convolution:
(C ∗B)k,l =

∑
i,j

Ck−i,l−jBi,j

Downsampling:

D(B)k,l = B2k,2l

b3 b4

b1 b2 b1

Upsampling:

U (B)[2k : 2k + 1, 2l : 2l + 1] =

[
Bk,l 0

0 0

]
0 0

b1 0b1
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ISTA as Convolutional Neural Network

Convolutional representation of K
(t)→(t′)
j→j′

Let δ = |j′ − j|. We have:

K
(t)→(t′)
j→j′ w

(t)
j =


Dδ(K̃

(t)→(t′)
j→j′ ∗W (t)

j ) if j > j′

K̃
(t)→(t′)
j→j′ ∗W (t)

j if j = j′

K̃
(t)→(t′)
j→j′ ∗U δ(W

(t)
j ) if j < j′

being K̃
(t)→(t′)
j→j′ ∈ R(2ĵ+1−1)×(2ĵ+1−1) (where ĵ = max(j, j′)):[
K̃

(t)→(t′)
j→j′

]
d

=

∫
R2

∫
R2

K(x− x′ − 2−ĵd) ψ
(t′)
j′,0(x′) ψ

(t)
j,0(x)dxdx′

d = (d1, d2); d1, d2 = {−2ĵ + 1, . . . , 0, . . . , 2ĵ − 1}.

Only O(p) elements compared to p2 = 24J parameters required to describe the
application of R∗ΓRΓ as a function from Rp to Rp.
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A Working Example – Step 1

2J=26

W
(h)
4

decomposition

W

2J0 = 23

2J1 = 25

The element [W
(t)
j ]d = [W

(t)
j ](d1,d2) is the component associated to the basis

function ψ
(t)
j,d(x) = 2jψ(t)(2jx1 − d1, 2

jx2 − d2).

Tatiana Bubba Deep neural networks for inverse problems with ΨDOs: the case of limited angle CT CodeSprint2020



Limited Angle Tomography IP and Sparsity ISTA as CNN ΨDONet Results Conclusions

A Working Example – Step 2

W
(h)
4

U

U

U

K̃
(h)→(d)
4→5

K̃
(h)→(v)
4→4

K̃
(h)→(f)
4→3

*

*

*

*

*

*

*

*

*

*

D

D

D

D
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A Working Example – Step 2

Consider the subband W
(h)
4 , namely the case j = 4:

if j′ = 3, then δ = 1 and ĵ = 4. This means we first compute the

convolution between the 31× 31 filter K̃
(t)→(t′)
4→3 and the matrix

W
(t)
4 ∈ R16×16 and then we downsample it to recover the 8× 8 matrix

describing K
(t)→(t′)
4→3 w

(t)
4 .

if j′ = 4, then δ = 0 and ĵ = 3. Hence we compute the convolution of the

31× 31 filter K̃
(t)→(t′)
4→4 with the matrix W

(t)
4 ∈ R16×16, we get a 16× 16

matrix representing the vector K
(t)→(t′)
4→4 w

(t)
4 ∈ R64.

if j′ = 5, then δ = 1 and ĵ = 5. To compute the 32× 32 matrix

associated to K
(t)→(t′)
4→5 w

(t)
4 , we must first upsample the matrix W

(t)
4 and

then convolve it with the 63× 63 filter K̃
(t)→(t′)
4→5 .
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A Working Example – Step 3

sum
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Smaller Filters and How to Get Them

Every layer is an application of (3(J −J0) + 1)2 convolutional filters and upscal-
ing/downscaling. Is it possible to use smaller filters?

Thresholding strategy

Fix τ > 1 and define K̃τ = (K̃
(t)→(t′)
j→j′ )τ , being τ = 2ξ + 1, as

[
K̃τ
]
d

=


[
K̃

(t)→(t′)
j→j′

]
d

if ‖d‖∞ ≤ τ,

0 if ‖d‖∞ > τ.

We can prove that, under suitable assumptions, the above modification is equiv-
alent to a perturbation of ISTA (for which convergence can still be proven) and
is ensured by the following bound on the elements of the convolutional filters:[

K̃
(t)→(t′)
j→j′

]
d
≤ c 2−ĵ

(‖d‖∞ − 1)3
with ‖d‖∞ > 1.
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Beyond the Radon Transform

The convolutional representation can be derived for any operator A : X → Y ,
with X and Y Hilbert spaces, satisfying the following assumptions:

(strong) sparsity: w† ∈ `0(N);

A : X → Y is injective;

A is a convolutional kernel operator:

(A∗AψI , ψI′)X =

∫
R2

∫
R2

K(x, x′)ψI(x)ψI′(x
′)dxdx′;

with K(x, x′) = K(x− x′). Moreover, the kernel K is smooth away from
the diagonal and satisfies (Calderón-Zygmund kernel)

K(x, x′) ≤ C

|x− x′| , |∇xK(x, x′)|+ |∇x′K(x, x′)| ≤ C

|x− x′|2 ;

first-order vanishing moment: each wavelet basis function ψI satisfies∫
R2

ψI(x)dx = 0.
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ΨDONet: a Network to Learn Pseudodifferential Operators

We define the Convolutional Neural Network fτθ : Y → X, called ΨDONet:

w(n) = S λ
L

(
w(n−1) − 1

L
K(n)w(n−1) +

1

L
WA∗m

)
,

where K(n) corresponds to the block-wise convolution operator (combination
of U , D and convolution) and θ = (K(1), . . . ,K(N)), possibly collecting other
learnable parameters (λ,L) and hyperparameters (N, τ).

ΨDONet can do better than ISTA:

reduce numerical errors induced by the discrete representation of A∗A;

mitigate model errors in the definition of the operator A itself;

might provide a representation of A∗A with respect to a slightly different
basis, which better fulfils the sparsity assumption on the solutions.

T.A. Bubba, M. Galinier, M. Lassas, M. Prato, L. Ratti and S. Siltanen, Deep neural networks
for inverse problems with pseudodifferential operators: an application to limited-angle tomography,
submitted, arXiv:2006.01620, 2020.
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ΨDONet and Fourier Integral Operators

In each layer, the network fτθ applies the filters associated to an operator whose
kernel is K0 +K1, where K0 is the kernel of A∗A and K1 is the kernel of
another learned operator.

K

split

K0: non trainable

kernel of R∗ΓRΓ (or ΨDO)

+

τ

τ

K1: trainable

kernel of another learned ΨDO

It works also for FIOs like RΓ: largest entries of the convolutional filters repre-
senting R∗ΓRΓ are located in the center and along some lines, stretching away
from the center (bowtie filters).

Tatiana Bubba Deep neural networks for inverse problems with ΨDOs: the case of limited angle CT CodeSprint2020



Limited Angle Tomography IP and Sparsity ISTA as CNN ΨDONet Results Conclusions

ΨDONet and Fourier Integral Operators

In each layer, the network fτθ applies the filters associated to an operator whose
kernel is K0 +K1, where K0 is the kernel of A∗A and K1 is the kernel of
another learned operator.

K

split

K0: non trainable

kernel of R∗ΓRΓ (or ΨDO)

+

τ

τ

K1: trainable

kernel of another learned ΨDO

It works also for FIOs like RΓ: largest entries of the convolutional filters repre-
senting R∗ΓRΓ are located in the center and along some lines, stretching away
from the center (bowtie filters).
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ΨDONet: a Convergence Result

Optimal network convergence

Let
L(θ;µ, ν) = Eu∼µ,ε∼ν

[
‖fτθ (Ap,qu+ ε)−Wu‖2`2

]
be the loss function associated to the network fτθ . As δ converges to 0, there
exists a constant c∗, depending on CB and τ , such that

L(θ∗;µ, ν) ≤ c∗δ2.

where:

Ap,q is a representation of A in the subspaces Xp = span{ψI}pI=1 and
Yq = span{ϕj}qj=1;

Xp is restricted to B = {u ∈ Xp : Wu ∈ `1(N); ‖Wu‖`1 ≤ CB}, with
probability density µ (prior knowledge on the exact solution);

ε is a Gaussian random vector with probability density ν (prior knowledge
on the noise), i.e., ν = N(0, σ2Iq);

θ∗: minimizer of the loss function L(θ;µ, ν) associated to fτθ .
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In Practice: Discretization and Implementation

For u† ∈ Rp we obtain the linear model

m = RΓu
† + ε, (1)

where RΓ ∈ Rq×p (discretized line integrals) and ε ∈ Rq (noise).

The regularized minimization problem reads as:

min
w∈Rp

‖RΓW
∗w −m‖22 + λ‖w‖1

where W ∈ Rp×p represents a discretization of the wavelet transform and

Wu† = w† ∈ Rp.
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Convolutional Kernel Operator for Limited Angle CT
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Convolutional Kernel Operator for Limited Angle CT

To imitate the behaviour of WR∗ΓRΓW
∗, the convolutional filters are applied to the

wavelet subbands of the target.

decomposition

convolution
sum

*

*

*
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*

*

*

*

*

*

=

=

=

=

=

=

=

=

=
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ΨDONet in Practice

Convolutional implementation of ISTA:

w(n+1) = S λ
L

(
w(n) +

1

L

(
WR∗Γm−Kw(n)

))
, n = {0, . . . , N}

where Sλ/L is the (component-wise) soft-thresholding operator.

K is converted into a partially trainable CNN:

only the center of the convolutional filters is learned (τ -thresholding);

also the regularization parameter λ and the step size L are learned.
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ΨDONet-F: Filter-Based ΨDONet

The model for ΨDONet-F reads as:

w(n+1) = Sγn
(
w(n) + αn

(
WR∗Γm− βn

(
K̆τw(n) + Λτζnw

(n)
)))

where Λζn denotes a single-layer of the CNN with n = {0, . . . , N}, the param-
eters to be learned are {γ0, α0, β0, ζ0,. . . ,γN , αN , βN , ζN}.

filter of convolutional
operator K

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

filter of non trainable

operator K̆τ

+

τ

τ

filter of trainable
operator Λτζ

Clear interpretation: modifying the weights of K through the learning process
can be thought of as a direct improvement of the back-projection operator
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ΨDONet-O: Operator-Based ΨDONet

The model for ΨDONet-O reads as:

w(n+1) = Sγn
(
w(n) + αn

(
WR∗Γm−WR∗ΓRΓW

∗
w(n)

)
+ βnΛτζnw

(n)
)

where n = {0, . . . , N}, the parameters to be learned are {γ0, α0, β0, ζ0,. . . ,γN , αN ,
βN , ζN} and Λζn has the same architecture as the operator K.

WR∗Γm

Λ0 +
β0

γ0

Λ1 +
β1

WR∗ΓRΓW
∗ −

α1

γ1

Λ2 +
β2

WR∗ΓRΓW
∗ −

α2

γ2

(. . .)

(. . .) Λn +
βn

WR∗ΓRΓW
∗ −

αn

γn

w(n+1)

Clear interpretation: it can still be seen as an adjunct for improving the
back-projection operator and it offers an implementation numerically
preferable to ΨDONet-F.
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About the Soft-thresholding Parameters

From a theoretical point of view, the soft-thresholding parameters γ0, . . . , γN in
ΨDONet-F and ΨDONet-O have to be non-negative.

Two options:

Stick to standard ISTA: enforce positivity by replacing each γn by 10γ̃n ,
where γ̃n becomes the actual trainable parameter.

Allow for a greater degree of freedom in the learning process, no longer
soft-thresholding: Sγn<0 is defined as the symmetric of the
soft-thresholding curve with respect to y = x.

For γn ≥ 0 :

Sγn(x) =


x− γn, if x ≥ γn
0, if |x| < γn

x+ γn, if x ≤ −γn

For γn < 0 :

Sγn(x) =

{
x− γn, if x ≥ 0

x+ γn, if x < 0
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Setup

Data set:
10700 synthetic images of ellipses, sized 128× 128, with number, locations,
sizes and intensity gradients chosen randomly
10000 images for training, 200 validation and 500 for testing
missing wedge of 60◦

Operators:
RΓ: Matlab’s radon for simulating data; parallel beam geometry function
of ODL (based on Astra toolbox) in ΨDONet
W: Python’s pywt with J = 7 and J0 = 3 (i.e., 10 subbands)

Network and training:
Tensorflow with Adam optimizer
40 different sets of trainable parameters: {ζn, γn, αn, βn} used over 3
consecutive blocks
N = 120, τ = 32; learning rate: 10−3; epochs: 3; batch size: 25.
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Conclusions

limited angle CT is a special inverse problem
ΨDOs and FIOs theory

ISTA, wavelets and unrolled neural networks
ISTA can be interpreted as a Convolutional Neural Network
convergence results on ISTA imply the convergence of the CNN solution

ΨDONet for learning ΨDOs and FIOs
split the convolutional kernel K = K0 +K1: fix K0, learn K1

convolution, upsampling and downsampling exactly prescribed thanks to the
“convolutional representation”
two equivalent implementations: ΨDONet-F and ΨDONet-O

data-driven inversion: limit influence of DL
combine knowledge from traditional inverse problems theory with
data-driven techniques
clearer idea of what is happening!
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Future Prospects

Generalization problem: convergence of the trained network

Moving towards real data:
bigger images (now training on 512× 512)
smaller visible wedges (e.g., in breast CT φ = 20◦ with 11 sampled angles)
loss function: structural similarity metric (SSIM) in the wavelet domain
loss function: additional regularization
work on hyperparameter optimization

Extension to other inverse problems with ΨDOs and FIOs:
geodesic X-ray transform (applications in seismic imaging)
synthetic-aperture radar (SAR)
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